

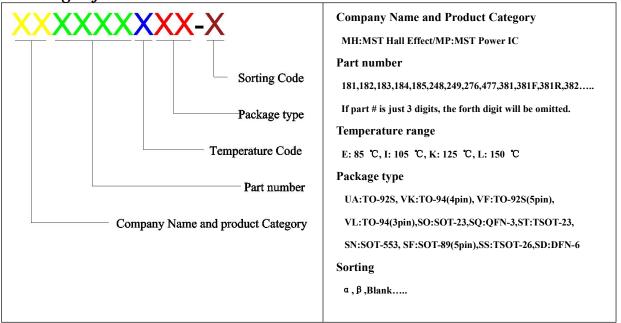
MH489 is a monolithic programmable Hall sensor IC featuring the planar Hall technology, which is sensitive to the flux density applied orthogonally to the IC surface. The sensor provides an output signal proportional to the applied magnetic flux density and is preferably suited for current measurement.

The transfer characteristic of MH489 is factory trimmed over temperature, and is programmable (offset, gain) during end-of-line customer calibration. The linear analog output is designed for applications where a very fast response is required, such as inverter applications.

In a typical application, the sensor is used in combination with a soft ferromagnetic core. This core is recommended to be laminated for high bandwidth applications. The Hall IC is placed in a small air gap and the current conductor is passed through the inner part of the ferromagnetic core.

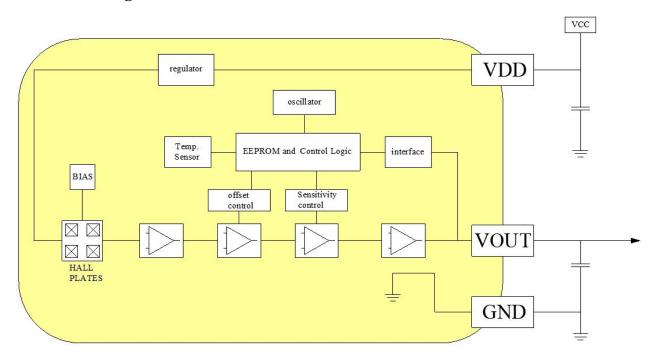
The core concentrates and amplifies the magnetic flux on the Hall sensor IC, which generates an output voltage proportional to the current flowing in the conductor.

Features and Benefits


- End-of-line programmable sensor
- User-selectable internal or external reference voltage
- User-selectable ratiometry of QVO
- Sensitivity is independent from VDD
- Measurement range from ± 0.9 to ± 25 mV/G
- Wideband sensing: DC to 240KHz
- Very short response time ($<3\mu s$)
- Supply voltage 5V or 3.3V
- RoHS compliant
- TO-94(3-pin) package
- MSL-1
- Automotive Grade1
- Automotive Grade AECQ100-Grade0 with diagnostics for safety-critical

Applications

- High Voltage Traction Motor Inverter
- 48V Boost Recuperation Inverter
- DC/DC Converter
- BLDC motor current monitoring
- Smart Fuse Overcurrent Detection



Ordering Information

Part No.	Temperature Suffix	Package Type
MH489KVL	$K (-40^{\circ}C \text{ to } + 125^{\circ}C)$	VL (To-94-3pin)

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

Parameter	Symbol	Value	Unit
Positive Supply Voltage (overvoltage)	V_{DD}	6.5	V
Reverse Voltage	VSrev	-0.3	V
Positive Output Voltage	Vout	5.5	V
Output Sink Current	Isink	-40	mA
Output Source Current	Isource	60	mA
Reverse Output Voltage	VOREV	-0.3	V
Reverse Output Current	IOrev	-50	mA
Operating Ambient Temperature Range	TA	-40 to +125	°C
Storage Temperature Range	Ts	-65 to +165	°C
ESD – Human Body Model	ESDнвм	8	KV
Maximum Number of EEPROM Write Cycles	EEPROMw(max)	1000	cycle

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum - rated conditions for extended periods of time may affect device reliability.

General Electrical Specifications

Operating Parameters $T_A = -40$ to 125°C, $V_{DD} = 5V \pm 10\%$, unless otherwise specified.

		-,				
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Nominal Supply Voltage	V _{DD}		4.5	5	5.5	V
Supply Current	Idd	No OUT load		13	18	mA
Output Impedance	Rout	Normal Operation		8		
Output Capacitive Load	CL			1	100	nF
Output Resistive Load	RL		2	4.7		K
Linear Output Range	VOLIN	pull-down \geq 10 kΩ	10		90	%Vdd

Analog output specification

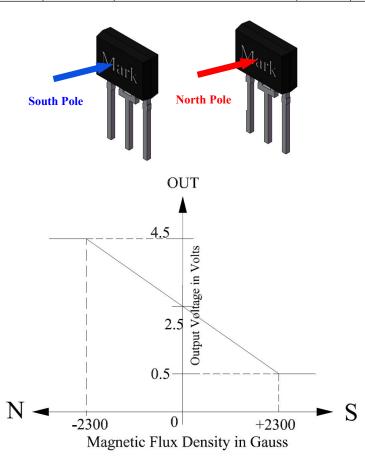
Accuracy specifications

Operating Parameters $T_A = -40$ to 125°C, $V_{DD} = 5V \pm 10\%$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
RMS Output Noise(high-gain)	Nrms-hg	Values for S=12.5mV/G, 1KHz-100KHz		7		mVrms
VOQ Ratiometry	$\Delta^{R}V$	$V_{DD} = 5V \pm 5\%, V_{OQ} = 50\%V_{DD}$		±0.24	±0.4	%Voq
Temperature coefficient variation of Sensitivity	δτενο	Over full range of BM and TA, calibrated IC, without TCoF	-200		200	ppm/°C
		T _A = 25°C, after trimming V _{DD} = 5V	0.496	0.50	0.504	V
	Vout		2.496	2.50	2.504	V
Sensor output Voltage			0.496	0.5	0.504	V
			V _{DD} /2 -4m	V _{DD} /2	V _{DD} /2 +4m	V
			V _{DD} /10 -4m	V _{DD} /10	V _{DD} /10 +4m	V
Offset Temperature characteristic	TCVOF	$B_{M}=0~\mu T,~S=12.5mV/G,~V_{OUT}-V_{DD}/2$	-0.120		0.120	mV/°C
Average Fine Sensitivity Programming Step Size	Stepsens	$S=12.5 \text{mV/G}, \text{ TA} = 25 ^{\circ}\text{C}$		1.5		μV/G

Note: The accuracy specifications are defined for the factory calibrated sensitivity. The achievable accuracy is dependent on the user's end-of-line calibration.

Timing specifications


Operating Parameters $T_A = -40$ to $125^{\circ}C$, $V_{DD} = 5V \pm 10\%$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Response Time	tRESP	T _A = 25 °C, C _L =1nf, Magnetic field step of 400G, Sens=2mV/G, Measured 90% input to 90% output.		2		μs
Frequency bandwidth	BW	-3 dB, T _A = 25 °C		240		kHz

Magnetic specification

Operating Parameters $T_A = -40$ to 125°C, $V_{DD} = 5V \pm 10$ %, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Operational Magnetic Field	BOP		±100	±1000	±2300	G
Range	ВОГ		100	11000	12300	U
Programmable Sensitivity	S		0.9	2	25	mV/G
Linearity Error (Magnetic)	NL	Vout in [10%Vdd, 90%Vdd], $T_A = 25^{\circ}\text{C}, \text{ RL} \ge 10 \text{ k}\Omega$			±0.25	%FS



Programmable Items

Parameter	Bits	Factory Setting	Comment
VOQ[4:0]	5	trimmed	Quiescent output level (0 Gauss) adjustment
RG[4:0]	5	trimmed	Rough gain adjustment
FG[7:0]	8	trimmed	Fine gain adjustment
POL	DOI 1	0	0: default polarity as described in section 10 (figure 4)
TOL	Ů,	1: opposite polarity	
ID[19:0]	20		CUSTOMER ID
VSEL[2:0]	3	4	0: 0.5V 1:VDD/10 2: 2.5V 3: VDD/2
VQ_RATIOM	1	0	0: QVO Ratiometry 1: QVO fixed

Recommended Application Diagram

ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).

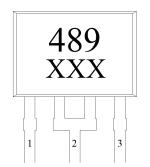
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

061824 Page 5 of 6 Rev. 0.01

Sensor Location, package dimension and marking VL Package (To-94-3pin)

Hall Sensor Location Mark

Hall Chip location


489 XXX 3.75 3.75 3.55 XXX 15.10 14.30 0.43 0.36 0.43 0.36

NOTES:

- 1.Controlling dimension: mm
- 2.Leads must be free of flash and plating voids
- 3.Do not bend leads within 1 mm of lead to package interface.
- 4.PINOUT:

Pin 1 VOUT Pin 2 GND Pin 3 VCC

Output Pin Assignment

