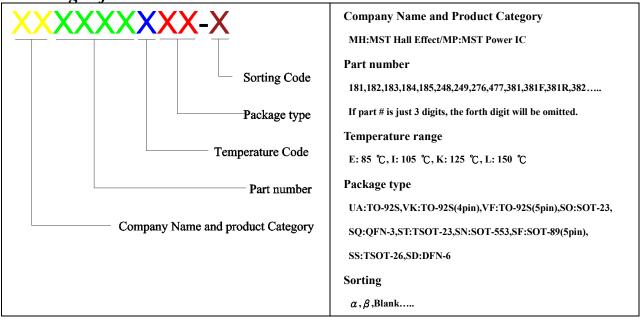


MH181 Specifications General-Purpose Hall Effect Latch Effect Latch

MH181, Hall-Effect sensor, designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall Voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and open collector output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. The device is identical except for magnetic switch points.

The device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-collector output to sink up to 25mA. A south pole of sufficient strength will turn the output on. The North Pole is necessary to turn the output off. An on-board regulator permits operation with supply voltages of 3.5V to 20 V.

The package type is in a lead Halogen Free version was verified by third party organization.


Features and Benefits

- Temperature compensation.
- Wide operating voltage range.
- Open-Collector pre-driver.
- Reverse bias protection on power supply pin.
- 100% at 125°C "Hot Test" in MH181KUA
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Hall IC application
- Fan motor application
- BLDC motor application
- 3 phase BLDC motor in "K" Spec

Ordering Information

MH181 Specifications General-Purpose Hall Effect Latch

Part No.	Temperature Suffix	Package Type
MH181KUA MH181EUA	K (-40°C to + 125°C) E (-40°C to + 85°C)	UA (TO-92S) UA (TO-92S)
MH181ESO	E (-40°C to + 85°C)	SO (SOT-23)

MH 181KUA is developed as "125 degree C Temperature Version" by MST technology. Major application is industrial and automotive.

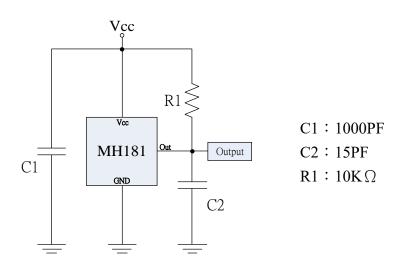
Functional Diagram

Voltage Regulator
Hall
Sensor

Absolute Maximum Ratings At (Ta=25°C)

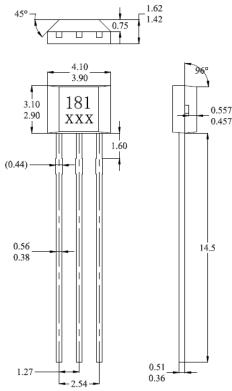
Absolute Maximum Rutings At (14-25 C)									
Characteristics			Values	Unit					
Supply voltage, (Vcc)			20	V					
Output Voltage,(Vout)			30	V					
Reverse voltage, (Vcc) (Vour)			-20	V					
Magnetic flux density			Unlimited	Gauss					
Output current, (Isink)		25	mA						
Out and in a Transport and Property	(T.)	"E" version	-20 to +85	°C					
Operating Temperature Range,	(1a)	"K" version	-40 to +125	°C					
Storage temperature range, (<i>Ts</i>)			-55 to +150	°C					
Maximum Junction Temp, (<i>Tj</i>)			150	°C					
Thermal Resistance	$(\theta$	ia) UA / SO	206 / 543	°C/W					
	(θ_{jc}) UA / SO		148 / 410	°C/W					
Package Power Dissipation, (P_D) UA/SO		606 / 230	mW						

Note: Do not apply reverse voltage to V_{CC} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

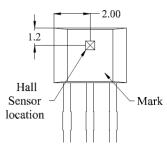

MH181 Specifications General-Purpose Hall Effect Latch

Electrical Specifications

DC Operating Parameters : Ta=+25 °C, Vcc=12V


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(Vcc)	Operating	3.5		20.0	V
Supply Current,(<i>Icc</i>)	B <b<sub>OP</b<sub>		4.0	8.0	mA
Output Saturation Voltage,(V _{Sat})	I _{OUT} = 10 mA, B>B _{OP}			700.0	mV
Output Leakage Current,(Ioff)	$I_{OFF} B < B_{RP}, V_{OUT} = 12V$			10.0	uA
Output Rise Time, (T_R)	$RL=820\Omega$, $CL=20pF$			1.5	uS
Output Fall Time,(<i>T_F</i>)	RL=820Ω; CL=20pF			1.5	uS

Typical application circuit

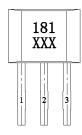


Sensor Location, Package Dimension and Marking

UA Package

Hall Chip location

1).Controlling dimension: mm


- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

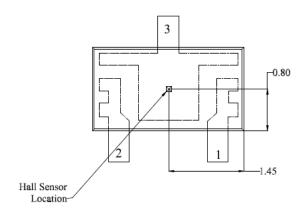
NOTES:

Pin 1 VCC
Pin 2 GND
Pin 3 Output

Output Pin Assignment

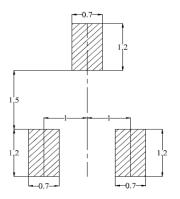
(Top view)




MH181 Specifications General-Purpose Hall Effect Latch Effect Latch

SO Package

(Top View)


Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{CC}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

