

MH180 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH180 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

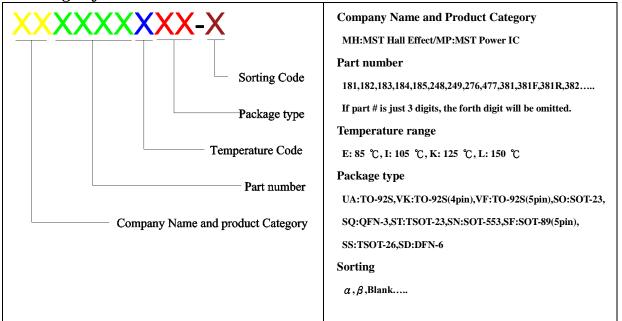
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH180 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package; Package SF is an SOT89-5L, a low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

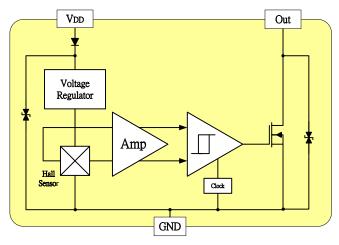
Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 $^{\circ}$ C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

080519 Page 1 of 5 Rev. 1.01


Ordering Information

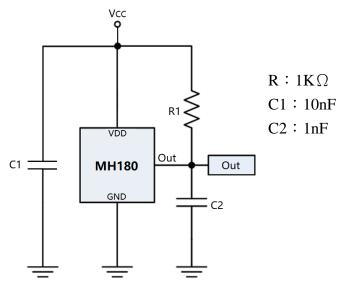
Part No.	Temperature Suffix	Package Type
MH180KUA	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	UA (TO-92S)
MH180KSO	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	SO (SOT-23)
MH180EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH180ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH180KSF	E (-40°C to + 125°C)	SF (5-pin SOT-89)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25 C)

Characteristics			Values	Unit
Supply voltage, (V_{DD})			28	V
Output Voltage,(Vout)			28	V
Reverse voltage, (VDD)			-28	V
Magnetic flux density			Unlimited	Gauss
Output current, (<i>Isink</i>)		50	mA	
Operating Tomperature Penge	(T_{α})	"E" version	-40 to +85	$^{\circ}\mathbb{C}$
Operating Temperature Range,	(1 <i>a</i>)	"K" version	-40 to +125	$^{\circ}\mathbb{C}$
Storage temperature range, (<i>Ts</i>)			-65 to +150	$\mathcal C$
Maximum Junction Temp,(<i>Tj</i>)			150	$\mathcal C$
Thermal Resistance	$(heta_{ja})$	UA / SO/ SF	206 / 543/ 156	°C/W
	$(heta_{jc})$	UA / SO/ SF	148 / 410/ 34	°C/W
Package Power Dissipation, (P_D) UA / SO/ SF		606 / 230 / 800	mW	

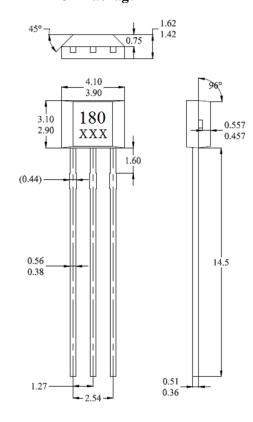

 $\it Note: Do not apply reverse voltage to V_{DD} and V_{OUT} \ \it Pin, It may be caused for Miss function or damaged device.$

Electrical Specifications

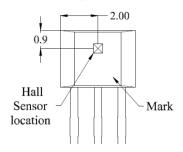
DC Operating Parameters: $T_A=+25 \, \text{C}$, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	2.5		24.0	V
Supply Current,(I_{DD})	B <b<sub>OP</b<sub>			5.0	mA
Output Saturation Voltage, (V_{sat})	$I_{OUT} = 20 \text{ mA}, B > B_{OP}$			400.0	mV
Output Leakage Current, (Ioff)	I_{OFF} B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA
Internal Oscillator Chopper Frequency,(fosc)			69		kHz
Output Rise Time, (T_R)	RL=1.1K Ω , CL =20pF		0.04	0.45	uS
Output Fall Time, (T_F)	RL=820Ω; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	HMB	4			KV
Operate Point,(BOP)	UA, SF, SO	10	50	90	Gauss
Release Point,(BRP)	UA, SF, SO	90	-50	-10	Gauss
Hysteresis,(BHYS)			100		Gauss

Typical application circuit



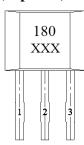
080519 Page 3 of 5 Rev. 1.01



Sensor Location, Package Dimension and Marking MH180 Package

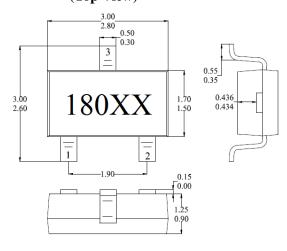
UA Package

Hall Chip location

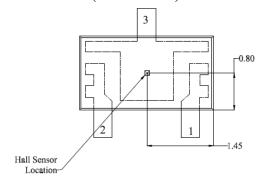

NOTES:

- 1). Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1	V_{DD}
Pin 2	GND
Pin 3	Output


Output Pin Assignment

(Top view)


SO Package

(Top View)

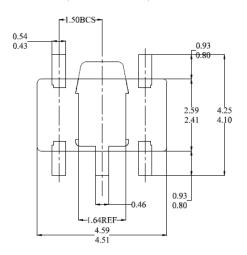
Hall Plate Chip Location

(Bottom view)

(For reference only)Land Pattern

1,5

NOTES:


- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

080519 Page 4 of 5 Rev. 1.01

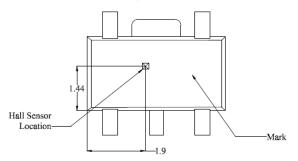
SF Package (SOT-89 5 pins)

(Bottom view)

NOTES:

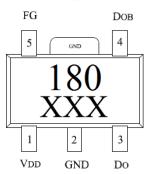
- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

 Pin 1
 VDD


 Pin 2
 GND

 Pin 3
 Out

 Pin 4
 N/A


 Pin 5
 N/A

Hall Chip location

Output Pin Assignment

(Top view)

