

MH180 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

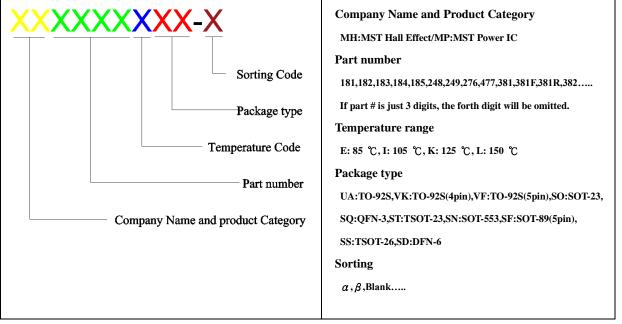
MH180 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH180 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package ; Package SF is an SOT89-5L, a low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

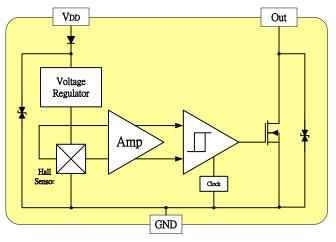
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits


- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability


Ordering Information

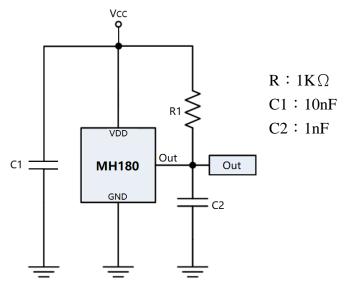
Part No.	Temperature Suffix	Package Type
MH180KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)
MH180KSO	K (-40°C to + 125°C)	SO (SOT-23)
MH180EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)
MH180ESO	E (-40°C to + 85°C)	SO (SOT-23)
MH180KSF	$E (-40^{\circ}C \text{ to } + 125^{\circ}C)$	SF (5-pin SOT-89)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

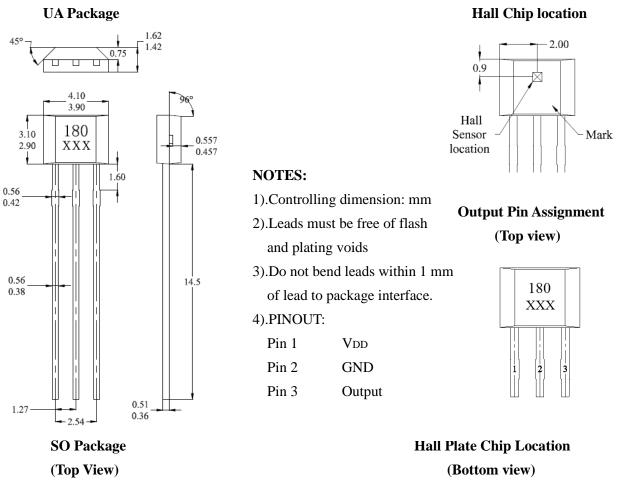
MH180 Specifications Ultra High Sensitivity Hall Effect Latch

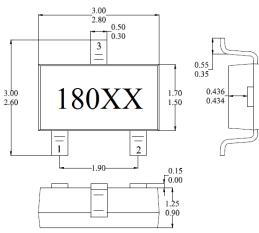
Absolute Maximum Ratings At (Ta=25°C)


Characteristics			Values	Unit	
Supply voltage, (VDD)			28	V	
Output Voltage,(Vout)			28	V	
Reverse voltage, (VDD)			-28	V	
Magnetic flux density			Unlimited	Gauss	
Output current, (<i>Isink</i>)		50	mA		
Operating Temperature Bange	(T_{α})	"E" version	-40 to +85	°C	
Operating Temperature Range,	, (1a)	"K" version	-40 to +125	°C	
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)			150	°C	
Thermal Resistance	$(heta_{ja})$	UA / SO/ SF	206 / 543/ 156	°C/W	
	$(heta_{jc})$	UA / SO/ SF	148 / 410/ 34	°C/W	
Package Power Dissipation, (P_D) UA / SO/ SF			606 / 230 / 800	mW	

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications


Electrical Specifications								
DC Operating Parameters: $T_A = +25 ^{\circ}C$, $V_{DD} = 12V$								
Parameters	Test Conditions	Min	Тур	Max	Units			
Supply Voltage,(V _{DD})	Operating	2.5		24.0	V			
Supply Current,(<i>I</i> _{DD})	B <b<sub>OP</b<sub>			5.0	mA			
Output Saturation Voltage, (Vsat)	$I_{OUT} = 20 \text{ mA}, \text{ B} > B_{OP}$			400.0	mV			
Output Leakage Current, (<i>Ioff</i>)	I_{OFF} B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA			
Internal Oscillator Chopper			69		kHz			
Frequency,(<i>f</i> _{OSC})			09		КПХ			
Output Rise Time, (T_R)	RL=1.1KΩ, CL =20pF		0.04	0.45	uS			
Output Fall Time, (T_F)	RL=820Ω; CL =20pF		0.18	0.45	uS			
Electro-Static Discharge	HMB	4			KV			
Operate Point,(BOP)	UA, SF, SO	10	50	90	Gauss			
Release Point,(BRP)	UA, SF, SO	90	-50	-10	Gauss			
Hysteresis,(BHYS)			100		Gauss			


Typical application circuit

Sensor Location, Package Dimension and Marking MH180 Package

NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

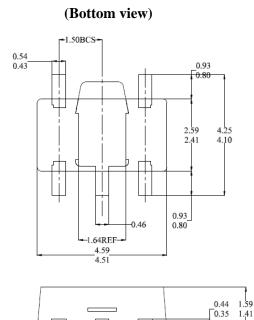
Hall Sensor Location

Rev. 1.01

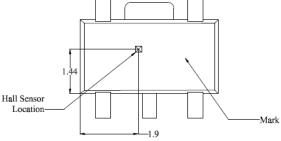
-0.80

1.45

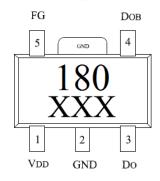
3


(For reference only)Land Pattern

0.7


0.7

SF Package (SOT-89 5 pins)



Hall Chip location

Output Pin Assignment

(Top view)

NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.

4).PINOUT:

Pin 1	Vdd
Pin 2	GND
Pin 3	Out
Pin 4	N/A
Pin 5	N/A