

MH178 Specifications Micropower Hall Effect Latch

MH178 Hall-effect latch is a temperature stable, stress-resistant, mini-power IC. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

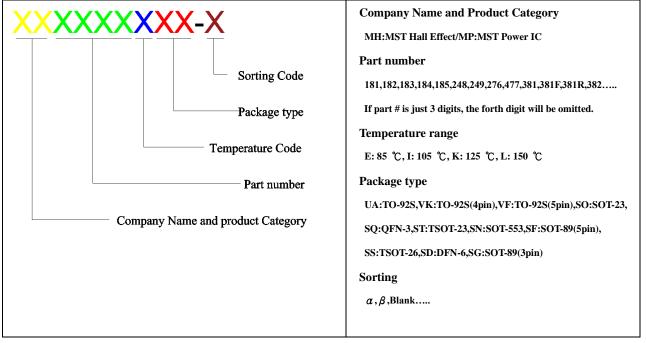
MH178 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH178 is rated for operation between the ambient temperatures -40°C and +85°C, and -40°C to 125°C for the K temperature range. for the E temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP-3 for through-hole mounting.

The package type is in a lead Halogen Free version was verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Strong RF noise protection
- 2.0 to 5.5V for battery-powered applications
- Operation down to 2.0V, Micro power consumption
- 100% tested at 125°C for K
- Low sensitivity drift in crossing of Temp range
- Ultra Low power consumption at 9uA (Avg)
- High ESD Protection, HBM > ± 4 KV(min)
- Open Drain output
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Speed sensing
- Position sensing
- Revolution counting
- Solid-State Switch
- Current sensing
- Revolution counting
- Solid-State Switch

Ordering Information

Part No.	Temperature Suffix	Package Type	
MH178KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)	
MH178EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)	
MH178ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)	

Custom sensitivity selection is available by MST sorting technology

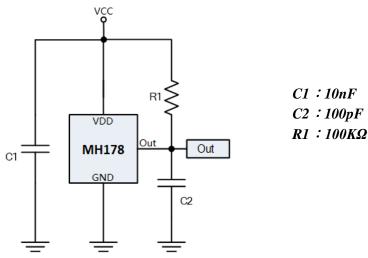
Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended.

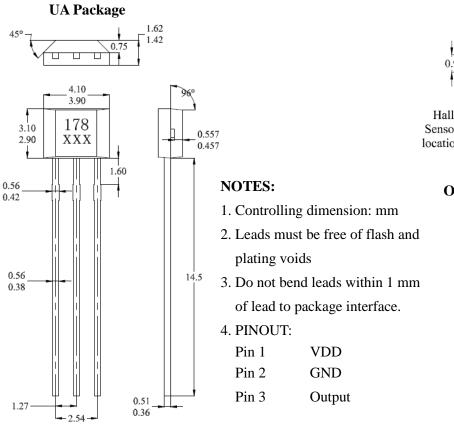
Absolute Maximum Ratings At (Ta=25°C)

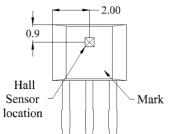
Characteristics	Values	Unit	
Supply voltage,(VDD)	6	V	
Output Voltage,(Vout)	6	V	
Reverse voltage, (VDD) (VOUT)	-0.3	V	
Magnetic flux density	Unlimited	Gauss	
Output current,(<i>Iour</i>)	10	mA	
$O_{\rm T}$	"E" version	-40 to +85	°C
Operating Temperature Range, (Ta)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)	-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C
Thermal Resistance	$(heta_{\scriptscriptstyle JA})$ UA / SO	206 / 543	°C/W
Thermai Resistance	(θ_{JC}) UA / SO	148 / 410	°C/W
Package Power Dissipation, (P_D) UA / SO		606 / 230	mW

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability.

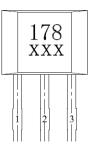

Electrical Specifications

DC Operating Parameters $T_A = +25^{\circ}C$, $V_{DD} = 3.0V$


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(V _{DD})	Operating	2.0		5.5	V
Supply Current,(<i>I</i> _{DD})	Awake State		2.0	5.0	mA
	Sleep State		7.0	10.0	uA
	Average		9.0	15.0	uA
Output Saturation Voltage,	Iout=5mA,B>BOP			200	mV
Output Leakage Current,(Ioff)	IOFF B <brp, vout="5.5V</td"><td></td><td></td><td>1.0</td><td>uA</td></brp,>			1.0	uA
Awake mode time,(<i>Taw</i>)	Operating		40	80	uS
Sleep mode time, (T_{SL})	Operating		40	80	mS
Duty Cycle,(<i>D</i> , <i>C</i>)			0.1		%
Response Time, (T_{RES})				5	Hz
Output Rise Time, (<i>T</i> _R)	RL=1K Ω , CL =20pF		0.18	0.45	uS
Output Fall Time, (<i>TF</i>)	RL=1K Ω ; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operating Point (B _{OP})	S pole to branded side, B > BOP, Vout On	5		40	Gauss
Release Point (B _{RP})	N pole to branded side, B < BRP, Vout	-40		-5	Gauss
Hysteresis (B _{HYS})	BOP - BRP		40		Gauss

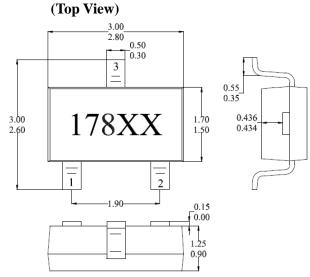

Typical Application circuit

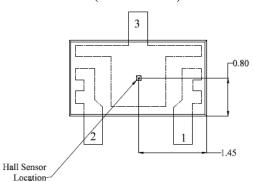
Sensor Location, Package Dimension and Marking



Hall Chip location

Output Pin Assignment


(Top view)



MH178 Specifications Micropower Hall Effect Latch

SO Package

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- **3**. Lead thickness after solder plating will be 0.254mm maximum