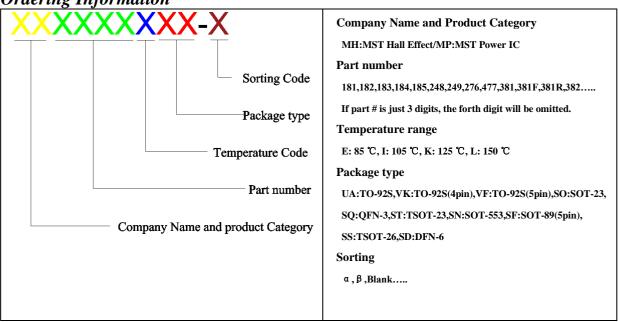


MH191 Specifications Inverted Output Hall Effect Latch

MH191 Hall-Effect sensor, designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall Voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and open collector output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. The device is identical except for magnetic switch points.

The device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, Schmitt trigger, open-collector output to sink up to 100mA. A south pole of sufficient strength will turn the output on. The North Pole is necessary to turn the output off. An on-board regulator permits operation with supply voltages of 4V to 30 V.

The package type is in a lead Halogen Free version was verified by third party organization.


Features and Benefits

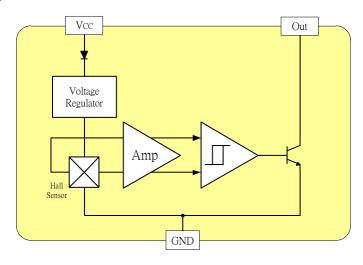
- Temperature compensation.
- Inverted output
- Wide operating voltage range.
- Open-Collector pre-driver.
- Reverse bias protection on power supply pin.

Applications

- High temperature Hall IC application
- Fan motor application
- BLDC motor application

Ordering Information

Ordering number


Part No.	Temperature Suffix	Package Type
MH191KUA	$(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	(TO-92S)

072519 Page 1 of 3 Rev 1.04

MH191 Specifications Inverted Output Hall Effect Latch

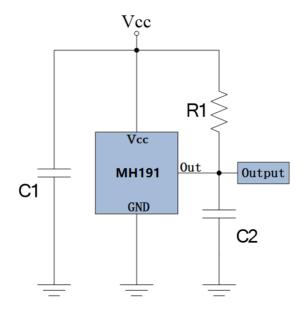
Functional Diagram

Absolute Maximum Ratings At(Ta=25°C)

Characteristics		Values	Unit	
Supply voltage,(Vcc)		35	V	
Reverse Vcc Polarity Voltage,(Vcc)		-35	V	
Magnetic flux density		Unlimited	Gauss	
Output "on" current,(I _{OUT})	Continuous	200	mA	
Operating temperature range, (<i>Ta</i>)		-40 to +125	°C	
Storage temperature range, (Ts)		-55 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C	
Thermal Resistance	(θja) UA	206	°C/W	
	(θjc) UA	148	°C/W	
Package Power Dissipation, (kage Power Dissipation, (P _D)		mW	

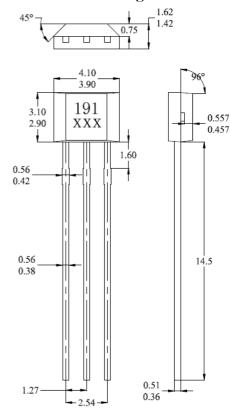
Note: Do not apply reverse voltage to V_{CC} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications


DC Operating Parameters: Ta=+25 °C, Vcc=12V

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(Vcc)	Operating	4		30.0	V
Supply Current,(Icc)	B <brp< td=""><td>7</td><td>14</td><td>25.0</td><td>mA</td></brp<>	7	14	25.0	mA
Output Saturation Voltage,(VSat)	$I_{OUT} = 5 \text{ mA}, B>BOP$		600.0	950.0	mV
Output Leakage Current,(Ioff)	I_{OFF} B <brp, <math="">V_{OUT} = 24V</brp,>		< 0.1	10.0	μΑ
Output Rise Time,(<i>TR</i>)	Vcc=14V,L1=820Ω,CL=20PF		3.0	10.0	μS
Output Falling Time,(<i>TF</i>)	Vcc=14V,L1=820Ω,CL=20PF		0.3	1.5	μS
Thermal shut-down Temp			130		°C
Thermal shut-down Hysteresis			40		°C
Operate Point		-100		-10	Gauss
Release Point		10		100	Gauss
Hysteresis			70		Gauss

MH191 Specifications Inverted Output Hall Effect Latch

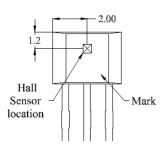

Typical application circuit

C1: 1000PF C2: 15PF

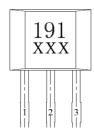
 $R1:10K\Omega$

Sensor Location, Package Dimension and Marking UA Package

NOTES:


- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 VDD


Pin 2 GND

Pin 3 Output

Hall Chip location

Output Pin Assignment (Top view)

