

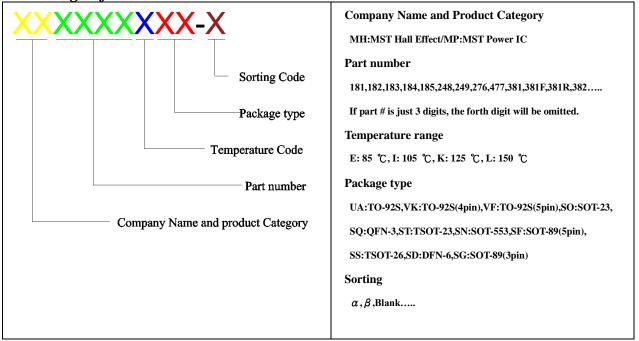
MH259 Hall-effect sensor is a temperature stable, stress-resistant switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH259 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

MH259 is rated for operation between the ambient temperatures -40°C and $+85^{\circ}\text{C}$ for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SP is an PSOT-23(0.55 mm nominal height), ST is an SOT-23(0.7mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

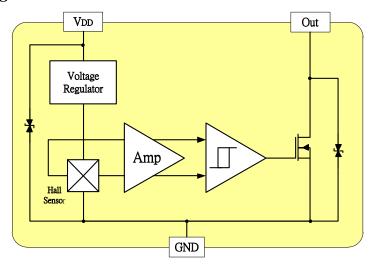
The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Strong RF noise protection
- 2.5 to 6.0V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 2.5V, Micro power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp range
- Ultra Low power consumption at 350uA (Avg)
- High ESD Protection, HBM $> \pm 4$ KV(min)
- Open Drain output
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter


Ordering Information

Part No.	Temperature Suffix	Package Type	
MH259KUA	K (-40° C to + 125° C)	UA (TO-92S)	
MH259EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)	
MH259ESO	E (-40°C to +85°C)	SO (SOT-23)	

Custom sensitivity selection is available by MST sorting technology

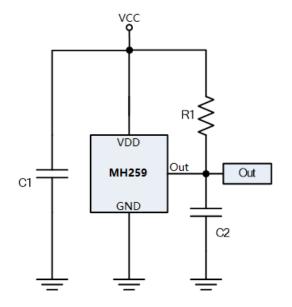
Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings At ($Ta=25 \ C$)

Characteristics			Values	Unit	
Supply voltage,(VDD)			6.5	V	
Output Voltage,(Vout)			6.5	V	
Reverse voltage, (VDD) (VOUT)			-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current,(Iovr)			10	mA	
On and in Transcription Decree	(T.)	"E" version	-40 to +85	$^{\circ}\mathbb{C}$	
Operating Temperature Range	e, (1a)	"K" version	-40 to +125	$^{\circ}\mathbb{C}$	
Storage temperature range, (<i>Ts</i>)			-55 to +150	$^{\circ}\mathbb{C}$	
Maximum Junction Temp, (Tj)			150	$^{\circ}\mathbb{C}$	
Thermal Resistance	$(\theta_{\scriptscriptstyle JA}$) UA / SO	206 / 543	°C/W	
	(θ_{JC}) UA / SO		148 / 410	°C/W	
Package Power Dissipation, (PD) UA/SO			606 / 230	mW	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Electrical Specifications

DC Operating Parameters $T_A=+25 \, \text{C}$, $V_{DD}=3.0 \text{V}$

Parameters Parameters		Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)		Operating	2.5		6	V
Supply Current,(IDD)		Awake State		1.5	3.0	mA
		Sleep State		3.5	7.0	uA
		Average		350	600	uA
Output Saturation Voltage,		Iout=5mA,B>BOP			200	mV
Output Leakage Current,(Ioff)		IOFF B <brp, vout="5.5V</td"><td></td><td></td><td>1.0</td><td>uA</td></brp,>			1.0	uA
Awake mode time,(<i>Taw</i>)		Operating		40	80	uS
Sleep mode time,(TSL)		Operating		160	320	uS
Duty Cycle, (D,C)				25		%
Response Time,(TRES)					2000	Hz
Electro-Static Discharge		НВМ	4			KV
Operating Point	BOPS	S pole to branded side, B > BOP, Vout	20		55	Gauss
	BOPN	N pole to branded side, B > BOP, Vout	-55		-20	Gauss
Release Point	BRPS	S pole to branded side, B < BRP, Vout	10		45	Gauss
	BRPN	N pole to branded side, B < BRP, Vout	-45		-10	Gauss
Hysteresis	BHYS	BOPx - BRPx		10		Gauss

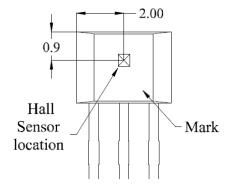
Typical Application circuit

C1: 10nF C2: 100pF

 $R1:10K\Omega$

Sensor Location, Package Dimension and Marking

4.10 3.90 3.10 2.90 XXX 1.60 0.557 0.457 0.56 0.38


0.51

0.36

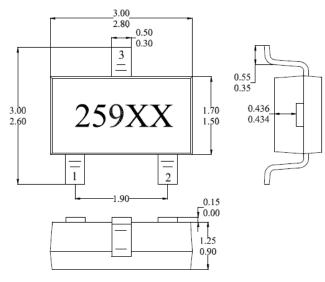
1.27

UA Package

Hall Chip location

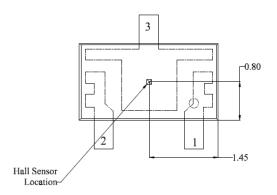
Output Pin Assignment (Top view)

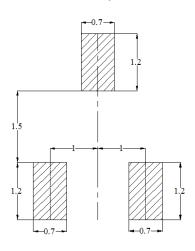
NOTES:


- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 VDD Pin 2 GND Pin 3 Output 259 XXX

SO Package


(Top View)


NOTES:

- 1. PINOUT (See Top View at left :)
 - $Pin \ 1 \qquad V_{DD}$
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

