

MH186 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

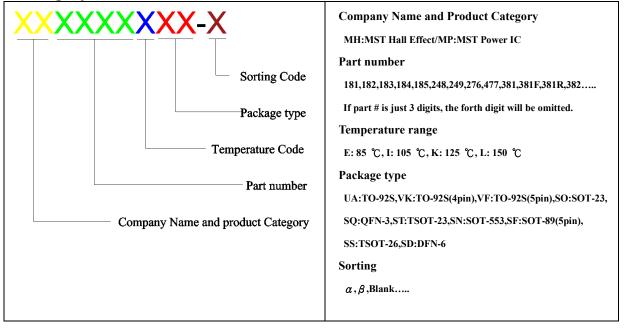
MH186 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH186 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP-3 for through-hole mounting.

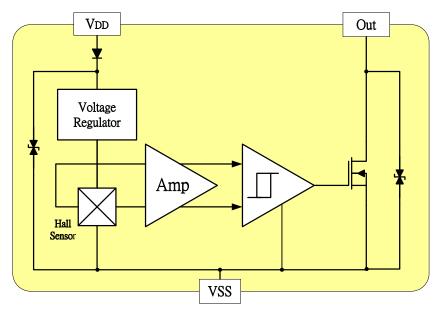
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits


- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability


Ordering Information

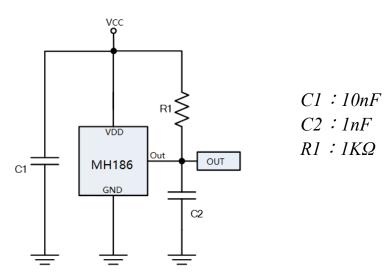
Part No.	Temperature Suffix	Package Type
MH186KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)
MH186KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH186EUA	E (-40°C to + 85°C)	UA (TO-92S)
MH186ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

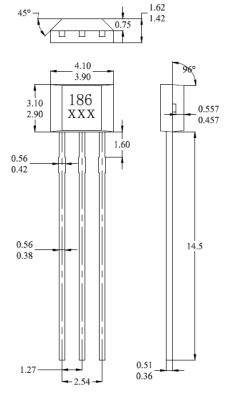
Characteristics		Values	Unit	
Supply voltage,(<i>V</i> _{DD})		28	V	
Output Voltage,(Vout)		28	V	
Reverse Voltage, (VDD) (VOUT)		-28/-0.3	V	
Output current, (<i>Iour</i>)		25	mA	
		"E" version	-40 to +85	°C
Operating Temperature Range,	"K" version		-40 to +125	°C
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C	
Thermal Resistance	$(heta_{ja})$) UA / SO	206 / 543	°C/W
	$(heta_{jo})$	e) UA / SO	148 / 410	°C/W
Package Power Dissipation, (P_D) UA / SO		606 / 230	mW	


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

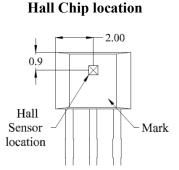
DC Operating Parameters : $T_A = +25^{\circ}C$, $V_{DD} = 12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.0		26.0	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td>3.0</td><td>5.0</td><td>mA</td></bop<>		3.0	5.0	mA
Output Saturation Voltage, (Vsat)	$I_{OUT} = 20 \text{ mA}, B > B_{OP}$			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA
Output Rise Time, (<i>T</i> _R)	RL=1.1KΩ, CL =20pF			0.45	uS
Output Fall Time, (<i>T_F</i>)	RL=820Ω; CL =20pF			0.45	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, (BOP)	UA(SO)	5(-60)		60(-5)	Gauss
Release Point, (BRP)	UA(SO)	-60(5)		-5(60)	Gauss
Hysteresis,(BHYS)	BOP - BRP		60		Gauss


Typical application circuit

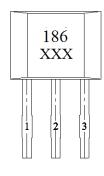
Sensor Location, Package Dimension and Marking

Package (UA Package)

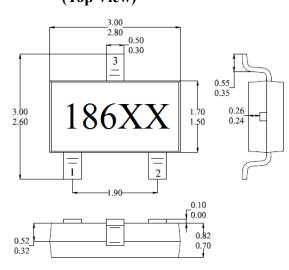


NOTES:

- Controlling dimension: mm
 Leads must be free of flash
 - and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.

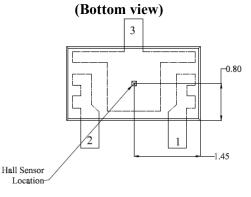

4).PINOUT:

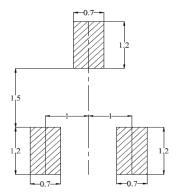
Pin 1	Vdd
Pin 2	GND
Pin 3	Output



Output Pin Assignment

(Top view)


Package (SOT-23) (Top View)


NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location

(For reference only)Land Pattern

