

MH182 Hall-Effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

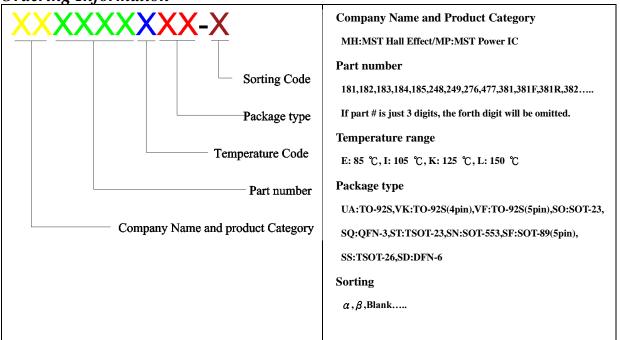
MH182 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

MH182 is rated for operation between the ambient temperatures –40°C and 85°C for the E temperature range, and –40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

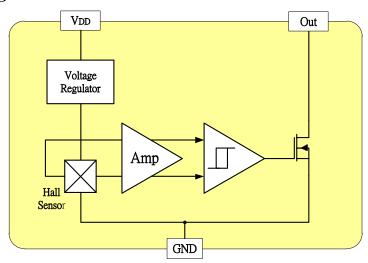
The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits


- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- New miniature package / thin, high reliability package
- Operation down to 3.0V
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection


Ordering Information

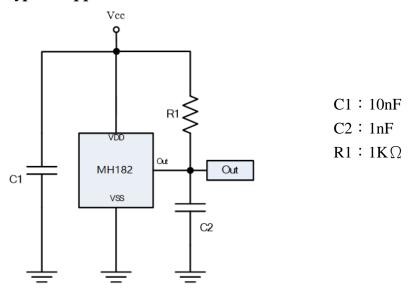
Part No.	Temperature Suffix	Package Type
MH182KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)
MH182KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)
MH182EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)
MH182ESO	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25 ℃)

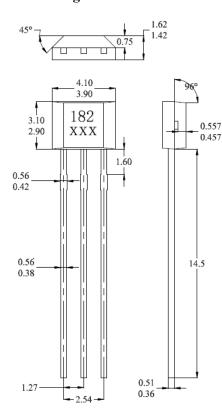
Characteristics			Values	Unit
Supply voltage, (V_{DD})			26	V
Output Voltage,(Vout)			26	V
Reverse voltage, (V_{DD}) (V_{OUT})			-0.3	V
Output current, (I_{OUT})			50	mA
Operating Temperature Range, (Ta)		"E" version	-40 to +85	°C
		"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-65 to +150	℃
Maximum Junction Temp,(<i>Tj</i>)			150	℃
Thermal Resistance	(θje	a) UA / SO	206 / 543	°C/W
	(θjc) UA / SO		148 / 410	°C/W
Package Power Dissipation, (P_D) UA / SO			606 / 230	mW


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters: $T_A=+25$ °C, $V_{DD}=12V$

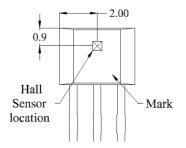
Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	3.0		24.0	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	$I_{OUT} = 10 \text{ mA}, B > B_{OP}$			400.0	mV
Output Leakage Current, (Ioff)	IOFF B $<$ Brp, Vout = 12V			15.0	uA
Output Rise Time, (T_R)	RL= 820Ω , CL= $20pF$			0.45	uS
Output Fall Time, (T_F)	RL=820 Ω; CL =20pF			0.45	uS
Operate Point,(BoP)		10		60	Gauss
Release Point,(BRP)		-60		-10	Gauss
Hysteresis,(BHYS)			80		Gauss


Typical application circuit

Sensor Location, Package Dimension and Marking

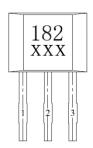
UA Package

NOTES:

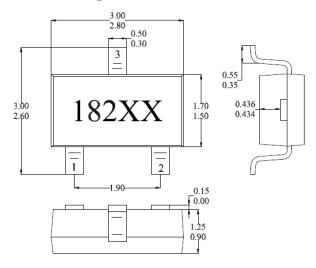

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 **VCC** Pin 2

GND


Pin 3 Output

Hall Chip location


Output Pin Assignment

(Top view)

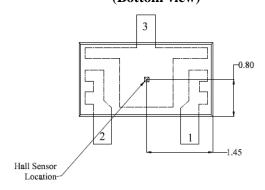
Package (SOT-23)

(Top View)

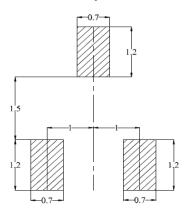
NOTES:

1. PINOUT (See Top View at left :)

Pin 1 V_{DD}


Pin 2 Output

Pin 3 **GND**


- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location

(Bottom view)

(For reference only)Land Pattern

