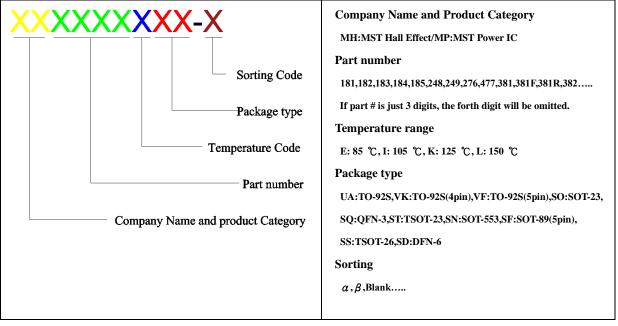


MH481 a linear Hall-effect sensor, is composed of Hall sensor, linear amplifier and Totem-Pole output stage. It features low noise output, which makes it unnecessary to use external filtering. It also can provide increased temperature stability and accuracy. The linear Hall sensor has a wide operating temperature range of -40°C to +105°C, appropriate for commercial, consumer, and industrial environments.

The high sensitivity of Hall-effect sensor accurately tracks extremely weak changes in magnetic flux density. The linear sourcing output voltage is set by the supply voltage and in proportion ofvary of the magnetic flux density. Typical operation current is 2.5mA and operating voltage range is 3.0 volts to 6.5 volts.

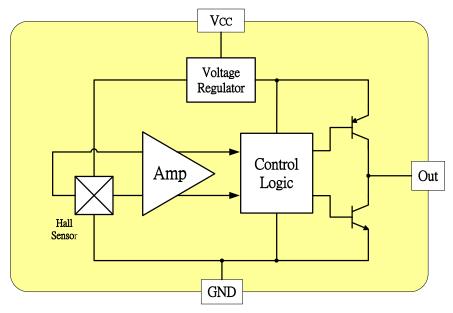
The UA package style available provides magnetically optimized solutions for most applications. The SQ package is a three-lead ultra-mini SMD and ST are the industrial standard package in SMT process.

Features and Benefits


- Operating Voltage Range: 3.0V~6.5V
- Power consumption of 2.5 mA at 5 V_{DC} for energy efficiency
- Low-Noise Operation
- Linear output for circuit design flexibility
- Totem-Pole for a stable and accurate output
- Responds to either positive or negative gauss
- Small package for SMD
- MagneticallyOptimized Package for SIP
- Cost competitive
- Robust ESD performance
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Current sensing
- Motor control
- Position sensing
- Magnetic code reading
- Rotary encoder
- Ferrous metal detector
- Vibration sensing
- Liquid level sensing
- Weight sensing



Ordering Information

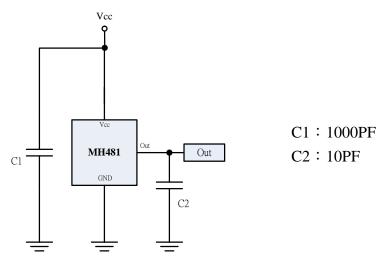
Part No.	Temperature Suffix	PackageType
MH481IUA	I (-40°C to + 105°C)	UA (TO-92S)
MH481ISQ	I (-40°C to $+ 105$ °C)	SQ (QFN2020-3)
MH481IST	I (-40°C to + 105°C)	ST(TSOT-23)

Functional Diagram

MH481 Specifications Ratio-metric Linear Hall Effect Sensor

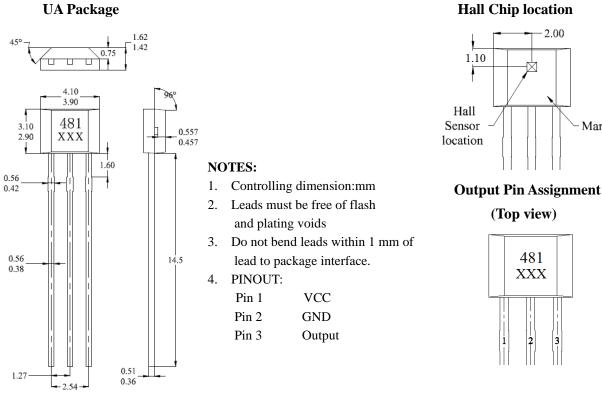
Absolute Maximum RatingsAt(Ta=25°C)

Characteristics		Values	Unit		
Supply Voltage,(VCC)			8	V	
Reverse Voltage, (VCC)			-0.5	V	
Magnetic Flux Density			Unlimited	Gauss	
Output Current, (IOUT)		10	mA		
Operating Temperature Range, (Ta)		"I" version	-40 to +105	°C	
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C		
Maximum Junction Temp,(<i>Tj</i>)			150	°C	
Thermal Resistance	(<i>θja</i>) U	A / SQ / ST	206 / 543 / 310	°C/W	
	(θjc) UA / SQ / ST		148 / 410 / 223	°C/W	
Package Power Dissipation, (PD)UA / SQ / ST		606 / 230 / 400	mW		

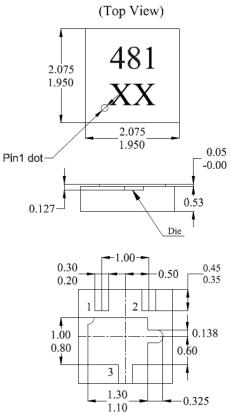

Note: Do not apply reverse voltage to Vccand Vour Pin, It may be caused for Missfunction or damaged device.

Electrical Specifications

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VCC)	Operating	3.0		6.5	V
Supply Current,(ICC)	B=0 Gauss		2.5	5.0	mA
Output Current ,(Io)	Vcc>3V	1.0	1.5		mA
Null Output Voltage, (V _{Null})	B=0 Gauss	2.3	2.5	2.7	V
Output Bandwidth, (Bw)			20		kHz
Output Voltage Span, (Vos)		2.95	3.2		V
Magnetic Range Gauss		±500	±800		Gauss
Linearity	% of Span		0.7		
Response Time			3		uS
Sensitivity		1.9		2.1	mV/G
Electro-Static Discharge	HBM	3			kV


DC Operating Parameters: $T_A = +25^{\circ}$ C, Vcc=5.0V

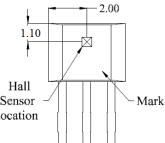
Typical application circuit



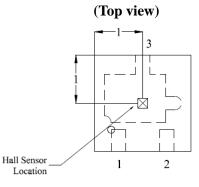
Sensor Location, package dimension and marking

SQ Package

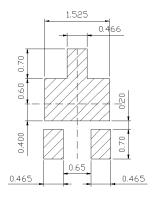
Bottom View


NOTES:

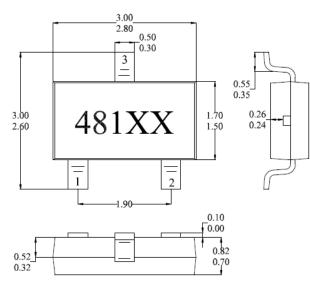
Pin 1


1. PINOUT (See Top View at left)

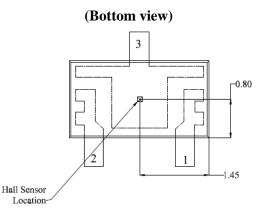
VCC

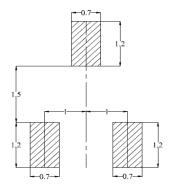

- Pin 2 Output
- GND Pin 3
- 2. Controlling dimension: mm;
- 3. Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.

Hall Plate Chip Location


(For reference only)Land Pattern

ST Package(TSOT-23)


(Top View)


NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm;

Hall Plate Chip Location

(For reference only)Land Pattern

