

MH189 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH189 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Open drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

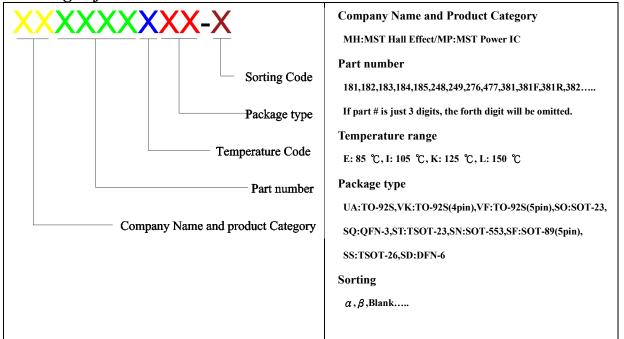
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH189 is rated for operation between the ambient temperatures −40°C and 85°C for the E temperature range, and −40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

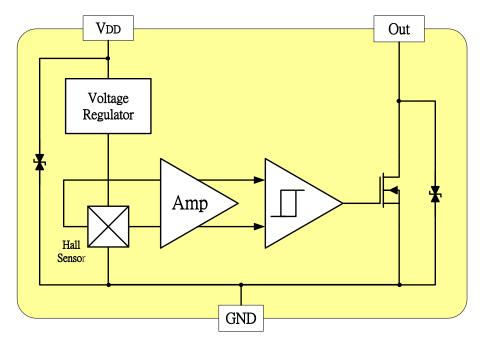
Features and Benefits

- DMOS Hall IC Technology
- AECQ qualified
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- Reliable and low shifting on high Temp condition
- Good ESD Protection
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

112318 Page 1 of 4 Rev. 1.05


Ordering Information

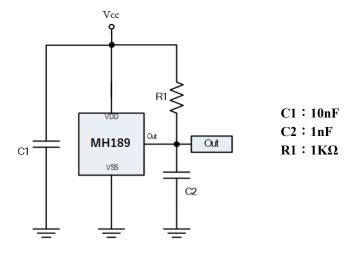
Part No.	Temperature Suffix	Package Type
MH189KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)
MH189KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)
MH189LUA	$E (-40^{\circ}C \text{ to } + 150^{\circ}C)$	UA (TO-92S)
		, ,

LUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25 ℃)

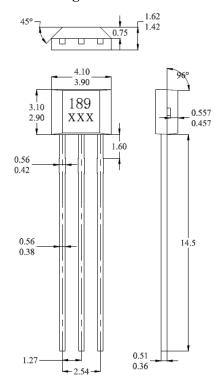
Characteristics	Values	Unit	
Supply voltage, (VDD)	28	V	
Output Voltage,(Vout)	28	V	
Reverse voltage, (VDD) (VOUT)	-0.3	V	
Output current, (ISINK)	50	mA	
On anoting Town another Banga (Ta)	"L" version	-40 to +150	°C
Operating Temperature Range, (Ta)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)	-65 to +150	°C	
Maximum Junction Temp,(Tj)	150	°C	
The second Descriptions	(θja) UA / SO	206 / 543	°C/W
Thermal Resistance	(θjc) UA / SO	148 / 410	°C/W
Package Power Dissipation, (PD) UA / SO		606 / 230	mW


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

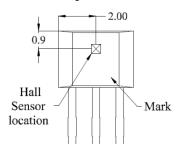
DC Operating Parameters : $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.0		26.0	V
Supply Current,(IDD)	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	IOUT = 10 mA, B>BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="12V</td"><td></td><td></td><td>10.0</td><td>uA</td></brp,>			10.0	uA
Power-On Time, (T_P)				50	uS
Output Switch Time, (T_{SW})				150	uS
Output Switch Frequency, (F_{SW})		3			kHz
Output Rise Time, (TR)	RL=1.1K Ω , CL=20pF			0.45	uS
Output Fall Time, (TF)	RL=820Ω; CL =20pF			0.45	uS
Electro-Static Discharge	HBM(AEQC-100)	2			KV
Operate Point,(Bop)		5(-25)		25(-5)	Gauss
Release Point,(Brp)		-25(5)		-5(25)	Gauss
Hysteresis,(BHYS)			30		Gauss


Typical application circuit

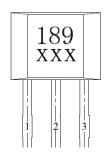
Sensor Location, Package Dimension and Marking

UA Package

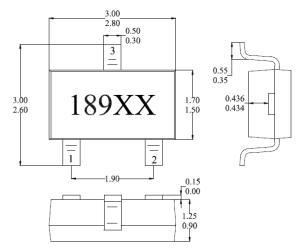


NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:


Pin 1 VCC Pin 2 GND Pin 3 Output

Hall Chip location


Output Pin Assignment

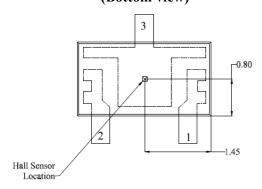
(Top view)

Package (SOT-23)

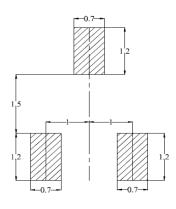
(Top View)

NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{DD}


Pin 2 Output

Pin 3 GND


- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location

(Bottom view)

(For reference only)Land Pattern

