

MH189 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH189 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Open drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH189 is rated for operation between the ambient temperatures -40° C and 85° C for the E temperature range, and -40° C to 125° C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

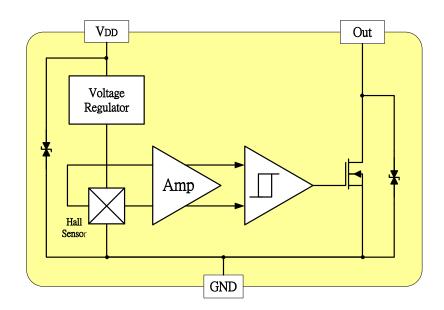
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology
- AECQ qualified
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- Reliable and low shifting on high Temp condition
- Good ESD Protection
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability



Ordering Information XXX-X **Company Name and Product Category** MH:MST Hall Effect/MP:MST Power MOSFET Part number Sorting Code 181,182,183,184,185,248,249,276,477,381,381F,381R,382..... If part # is just 3 digits, the forth digit will be omitted. Package type **Temperature range** Temperature Code E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C Package type Part number UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23, Company Name and product Category SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin),SH:D FN2*2-6L, SR:SOT-26L Sorting α,β,Blank.....

Part No.	Temperature Suffix	Package Type	
MH189KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)	
MH189KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)	
MH189EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)	
MH189ESO	$E(-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)	

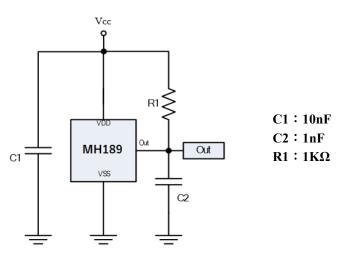
KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

MH 189 Specifications Ultra High Sensitivity Hall Effect Sensor

Absolute Maximum Ratings At (Ta=25 °C)

Characteristics	Values	Unit	
Supply voltage, (VDD)	28	V	
Output Voltage,(Vout)	28	V	
Reverse voltage, (VDD) (VOUT)	-0.3	V	
Output current, (ISINK)		50	mA
O_{1} and T_{2} T_{2} T_{2}	"E" version	-40 to +85	°C
Operating Temperature Range, (Ta)	"K" version	-40 to +125	°C
Storage temperature range, (Ts)	-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C
	(<i>θja</i>) UA / SO	206 / 543	°C/W
Thermal Resistance	(θjc) UA / SO	148 / 410	°C/W
Package Power Dissipation, (P _D) UA / SO		606 / 230	mW


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A = +25^{\circ}C$, $V_{DD} = 12V$

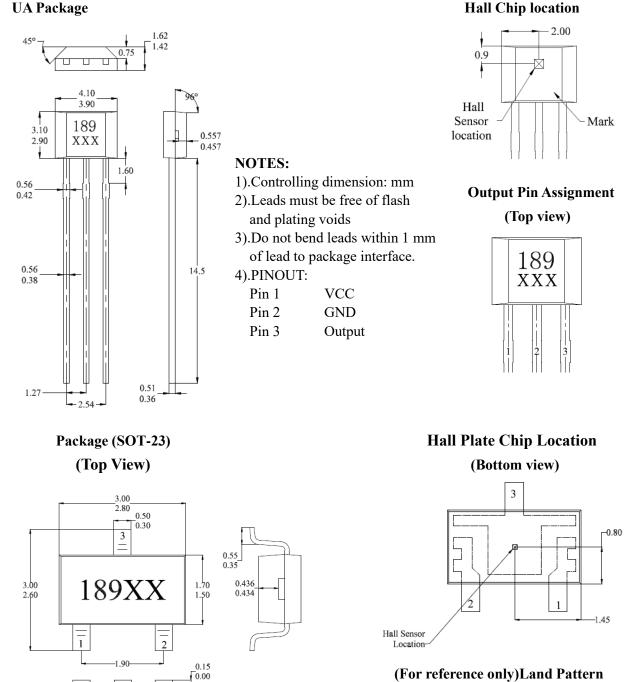
Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.0		26.0	V
Supply Current,(IDD)	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	IOUT = 10 mA, B>BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="12V</td"><td></td><td></td><td>10.0</td><td>uA</td></brp,>			10.0	uA
Power-On Time, (T_P)				50	uS
Output Switch Time, (T_{SW})				150	uS
Output Switch Frequency, (F_{SW})		3			kHz
Output Rise Time, (<i>TR</i>)	RL=1.1KΩ, CL =20pF			0.45	uS
Output Fall Time, (TF)	RL=820Ω; CL =20pF			0.45	uS
Electro-Static Discharge	HBM(AEQC-100)	2			KV
Operate Point,(Bop)		5(-25)		25(-5)	Gauss
Release Point,(Brp)		-25(5)		-5(25)	Gauss
Hysteresis,(BHYS)			30		Gauss

Typical application circuit

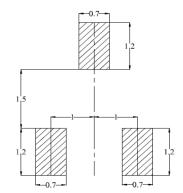
Sensor Location, Package Dimension and Marking

1 25 0.90

1. PINOUT (See Top View at left :)


Output

2. Lead thickness after solder plating will be


GND 1. Controlling dimension: mm

0.254mm maximum

 V_{DD}

(For reference only)Land Pattern

090720

NOTES:

Pin 1

Pin 2

Pin 3