

MH168 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

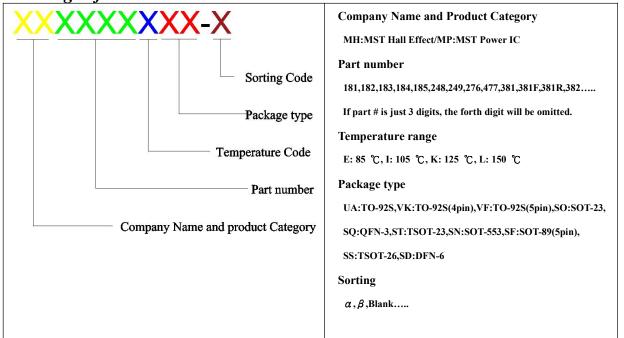
MH168 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH168 is rated for operation between the ambient temperatures -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is a SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

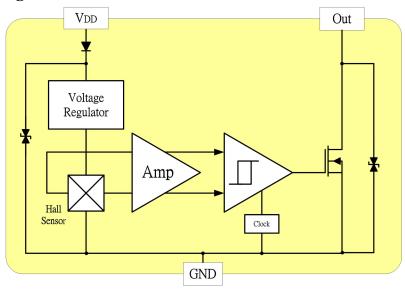
#### Features and Benefits


- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

#### **Applications**

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability




### **Ordering Information**



| Part No. | Temperature Suffix   | Package Type       |
|----------|----------------------|--------------------|
| MH168KUA | K (-40°C to + 125°C) | UA (TO-92S)        |
| MH168KSO | K (-40°C to + 125°C) | SO (SOT-23)        |
| MH168KSM | K (-40°C to + 125°C) | SM (DFN1.6*1.6-6L) |

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

### Functional Diagram

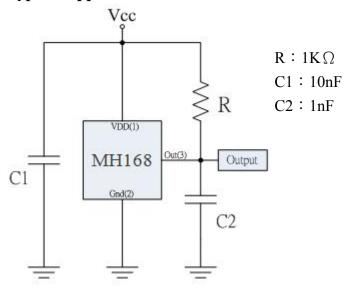




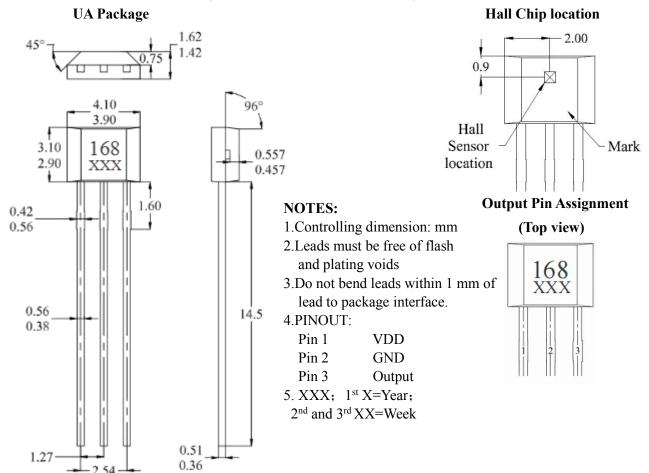
Absolute Maximum Ratings At (Ta=25°C)

| Characteristics                                          |                              | Values          | Unit |
|----------------------------------------------------------|------------------------------|-----------------|------|
| Supply voltage, (VDD)                                    |                              | 27              | V    |
| Output Voltage,(Vout)                                    |                              | 27              | V    |
| Reverse voltage, $(V_{DD})$                              |                              | -27/-0.3        | V    |
| Output current, ( <i>Iout</i> )                          |                              | 40              | mA   |
| Operating Temperature Range, (Ta)                        |                              | -40 to +125     | °C   |
| Storage temperature range, (Ts)                          |                              | -50 to +125     | °C   |
| Maximum Junction Temp,( <i>Tj</i> )                      |                              | 125             | °C   |
| Thermal Resistance                                       | $(	heta_{ja})$ UA / SO / SM  | 206 / 543 / 250 | °C/W |
|                                                          | $(\theta_{jc})$ UA / SO / SM | 148 / 410 / 50  | °C/W |
| Package Power Dissipation, (P <sub>D</sub> ) UA / SO/ SM |                              | 606 / 230 / 500 | mW   |

Note: Do not apply reverse voltage to  $V_{DD}$  and  $V_{OUT}$  Pin, It may be caused for Miss function or damaged device.

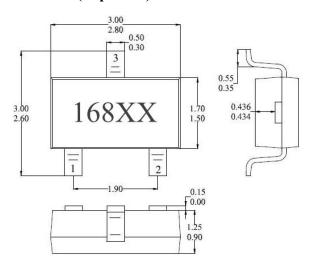

### **Electrical Specifications**

DC Operating Parameters :  $T_A=+25 \, \text{°C}$ ,  $V_{DD}=12V$ 


| Parameters                          | <b>Test Conditions</b>                                         | Min     | Тур  | Max     | Units |
|-------------------------------------|----------------------------------------------------------------|---------|------|---------|-------|
| Supply Voltage, $(V_{DD})$          | Operating                                                      | 2.5     |      | 26.0    | V     |
| Supply Current, $(I_{DD})$          | B <bop< td=""><td></td><td>1.6</td><td></td><td>mA</td></bop<> |         | 1.6  |         | mA    |
| Output Saturation Voltage, (Vsat)   | Iout=20mA,B>B <sub>OP</sub>                                    |         |      | 400.0   | mV    |
| Output Leakage Current, (Ioff)      | $I_{OFF}$ B <b<sub>RP, <math>V_{OUT}</math> = 12V</b<sub>      |         |      | 10.0    | uA    |
| Power-On Time, $(T_{PO})$           | Power-On                                                       |         | 0.05 | 0.10    | uS    |
| Output Response Time, $(T_{RES})$   | Operating                                                      |         | 0.30 | 0.65    | mS    |
| Output Switch Frequency, $(F_{SW})$ | Operating                                                      | 40      |      |         | kHz   |
| Output Rise Time, $(T_R)$           | RL=1K $\Omega$ , CL =20pF                                      |         | 0.5  |         | uS    |
| Output Fall Time, $(T_F)$           | RL=1KΩ; CL =20pF                                               |         | 0.02 |         | uS    |
| Electro-Static Discharge            | HBM                                                            | 6       |      |         | KV    |
| Operate Point, $(B_{OP})$           | UA、SM (SO)                                                     | 10(-30) |      | 30(-10) | Gauss |
| Release Point, $(B_{RP})$           | UA、SM (SO)                                                     | -30(10) |      | -10(30) | Gauss |
| Hysteresis, $(B_{HYS})$             |                                                                |         | 40   |         | Gauss |



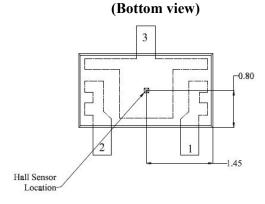
### Typical application circui



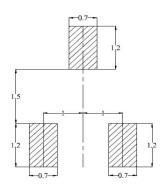

### Sensor Location, Package Dimension and Marking





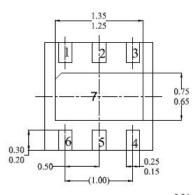

### Package (SOT-23) (Top View)

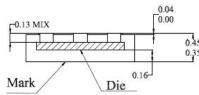


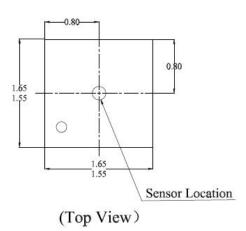

#### **NOTES:**

- 1. PINOUT (See Top View at left :)
  Pin 1 :V<sub>DD;</sub> Pin 2: Output ; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

### Hall Plate Chip Location





#### (For reference only) Land Pattern



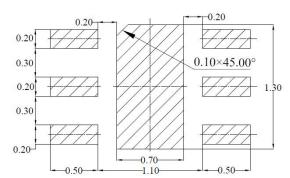



# **SM Package** (Bottom View)








#### **NOTES:**

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum

#### 4. PINOUT:

| Pin No. | Pin Name     | Function     |  |
|---------|--------------|--------------|--|
| 1       | $V_{ m DD}$  | Power Supply |  |
| 2       | N.C          | N.C          |  |
| 3       | $V_{ m OUT}$ | Output       |  |
| 4       | N.C          | N.C          |  |
| 5       | Vss          | Ground       |  |
| 6       | N.C          | N.C          |  |
| 7       | N.C          | N.C          |  |

5. (For reference only) Land pattern

