

MH188 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH188 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH188 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is a SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

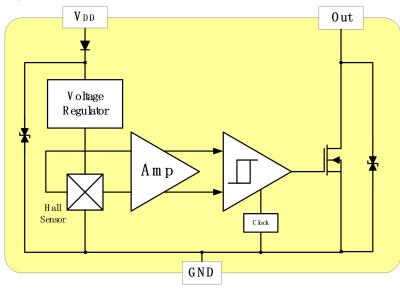
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability



Ordering Information X-XXXX **Company Name and Product Category** MH:MST Hall Effect/MP:MST Power IC Part number Sorting Code 181,182,183,184,185,248,249,276,477,381,381F,381R,382..... If part # is just 3 digits, the forth digit will be omitted. Package type **Temperature range Temperature** Code E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C Package type Part number UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23, Company Name and product Category SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin), SS:TSOT-26,SD:DFN-6 Sorting α,β,Blank.....

Part No.	Temperature Suffix	Package Type
MH188KUA	K (-40° C to + 125°C)	UA (TO-92S)
MH188KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH188EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)
MH188ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)
MH188ESD	$E(-40^{\circ}C \text{ to } +85^{\circ}C)$	SD (DFN2*2-6L)
MH188KSM	K(-40°C to +125°C)	SM (DFN1.6*1.6-6L)

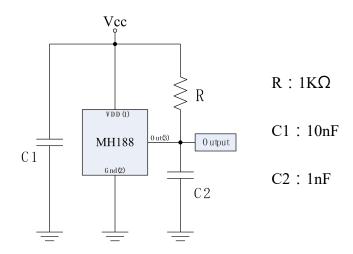
KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

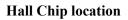
MH188 Specifications Ultra High Sensitivity Hall Effect Latch

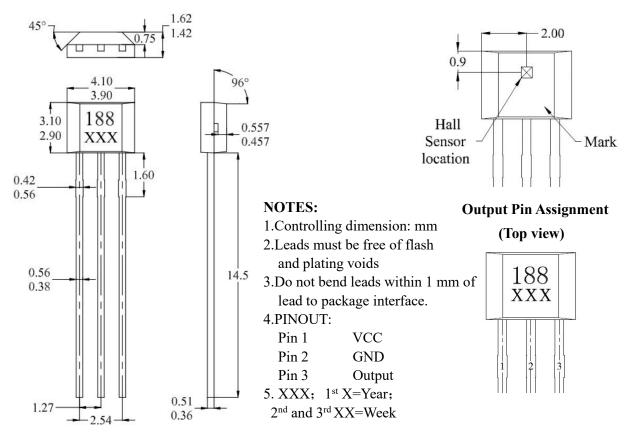
Absolute Maximum Ratings At (Ta=25°C)

Characteristics		Values	Unit	
Supply voltage, (VDD)		28	V	
Output Voltage,(Vout)		28	V	
Reverse voltage, (V _{DD})		-28/-0.3	V	
Output current, (<i>lout</i>)		50	mA	
Operating Temperature Range, (Ta)		"E" version	-40 to +85	°C
		"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C	
	$(heta_{ja})$ U	A/SO/SD/SM	206/543/160/250	°C/W
Thermal Resistance	$(heta_{jc})$ U	A/SO/SD/SM	148/410/35/50	°C/W
Package Power Dissipation, (P_D) UA/SO/SD/SM		606/230/780/500	mW	

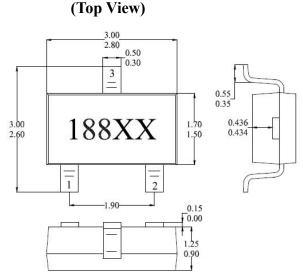

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications DC Operating Parameters $T_{4}=+25$ °C $V_{DD}=12V$

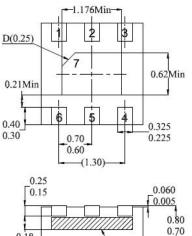

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V _{DD})	Operating	2.5		26.0	V
Supply Current, (<i>I</i> _{DD})	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	Iout=20mA,B>B _{OP}			400.0	mV
Output Leakage Current, (Ioff)	$I_{OFF} B < B_{RP}, V_{OUT} = 12V$			10.0	uA
Power-On Time, (T_{PO})	Power-On		0.05	0.10	uS
Output Response Time, (<i>T_{RES}</i>)	Operating		0.30	0.65	mS
Output Switch Frequency, (F_{SW})	Operating	3			kHz
Output Rise Time, (T_R)	RL=1KΩ, CL =20pF		0.12	0.35	uS
Output Fall Time, (<i>T_F</i>)	RL=1KΩ; CL =20pF		0.05	0.15	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, (B _{OP})	UA/SD/SM (SO)	5(-25)		25(-5)	Gauss
Release Point, (B_{RP})	UA/SD/SM (SO)	-25(5)		-5(25)	Gauss
Hysteresis, (B _{HYS})			30		Gauss

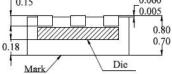


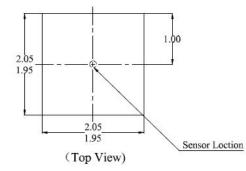
Typical application circuit


Sensor Location, Package Dimension and Marking UA Package

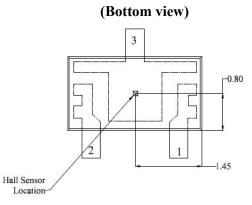
Package (SOT-23)

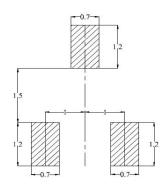



NOTES:


- 1. PINOUT (See Top View at left :) Pin 1 :V_{DD;} Pin 2: Output ; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

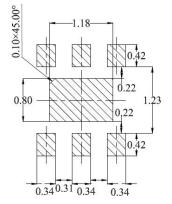
SD Package





Hall Plate Chip Location

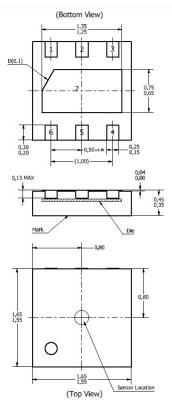
(For reference only) Land Pattern



NOTES:

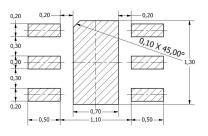
- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. PINOUT:

Pin No.	Pin Name	Function
1	Vdd	Power Supply
2	N.C	N.C
3	Vout	Output
4	N.C	N.C
5	Vss	Ground
6	N.C	N.C
7	N.C	N.C


5. (For reference only) Land pattern

MH188 Specifications Ultra High Sensitivity Hall Effect Latch

<u>SM Package</u>



NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. Marking:A3X; X: Date Code, Refer to DC table
- 5. PINOUT:

1110011		
Pin No.	Pin Name	Function
1	V _{DD}	Power Supply
2	NC	NC
3	OUT	Output
4	NC	NC
5	V _{ss}	Ground
6	NC	NC
7	PAD	NC

6. (For reference only) Land Pattern

