

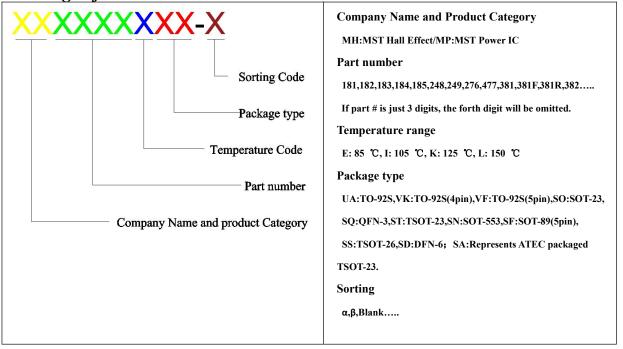
MH231 Hall-effect sensor is a temperature stable, stress-resistant, Low Tolerance of Sensitivity nano-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH231 is special made for low operation voltage, 1.65V, to active the chip which is includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, CMOS output driver. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of omni-polar magnetic fields for operation.

The package type is in a Halogen Free version has been verified by third party Lab.

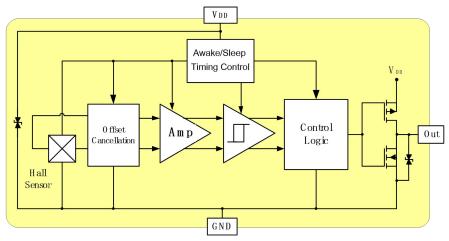
Features and Benefits

- CMOS Hall IC Technology
- Strong RF noise protection
- 1.65 to 5.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.65V, Nano power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp. range
- Ultra Low power consumption at 900nA (Avg)
- High ESD Protection, HBM >±4KV(min)
- Totem-pole output
- RoHS compliant 2011/65/EU and Halogen Free.


Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter
- PDVD
- NB

072425 Page 1 of 6 Rev. 0.01


Ordering Information

Part No.	Temperature Suffix	Package Type	
MH231EUA	E $(-40$ °C to $+85$ °C)	UA (TO-92S)	
MH231ESO	E $(-40$ °C to $+85$ °C)	SO (SOT-23)	
MH231ESO-AA	E $(-40$ °C to $+85$ °C)	SO (SOT-23)	
MH231ESA	E $(-40$ °C to $+85$ °C)	SA (SOT-23)	
MH231ESP	E $(-40$ °C to $+85$ °C)	SP (PSOT-23)	

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

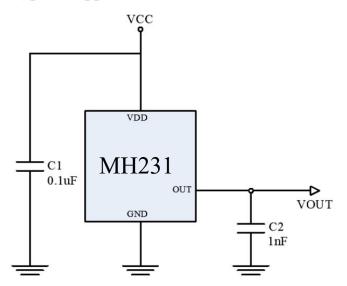
Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

MH231, HBM >±4KV which is verified by third party lab.

072425 Page 2 of 6 Rev. 0.01

Absolute Maximum RatingsAt(Ta=25°C)

Characteristics	Values	Unit
Supply voltage, (V_{DD})	6	V
Output Voltage,(Vout)	6	V
Reverse Voltage, (V_{DD}) (V_{OUT})	-0.3	V
Magnetic flux density	Unlimited	Gauss
Output current,(Iovr)	10	mA
Operating temperature range, (<i>Ta</i>)	-40 to +85	°C
Storage temperature range, (Ts)	-65 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)	150	°C


Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters: $Ta=25 \, ^{\circ}C$, $V_{DD}=3.0 V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	1.65		5.5	V
Supply Current,(I_{DD})	Average		900		nA
Output Leakage Current,(Ioff)	Output off			1	uA
Output High Voltage,(V _{OH})	I _{OUT} =0.5mA(Source)	V_{DD} -0.04			mV
Output Low Voltage, (V_{OL})	I _{OUT} =0.5mA(Sink)			0.04	mV
Awake mode time,(<i>Taw</i>)	Operating		25	50	uS
Sleep mode time, (T_{SL})	Operating		35	50	mS
Sampling period			35		mS
Electro-Static Discharge	HBM	4			KV

Typical Application circuit

MH231EUA/SP Magnetic Specifications

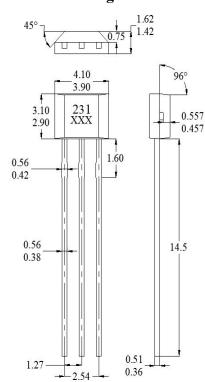
DC Operating Parameters: $Ta=25 \, \text{°C}$, $V_{DD}=3.0 V$

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
OperatingPoint	Bops	S pole to branded side, B > BOP, Vout On	20		40	Gauss
	Bopn	N pole to branded side, B > BOP, Vout On	-40		-20	Gauss
Release Point	B _{RPS}	S pole to branded side, B < BRP, Vout Off	10		30	Gauss
	$\mathrm{B}_{\mathrm{RPN}}$	N pole to branded side, B < BRP, Vout Off	-30		-10	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		10		Gauss

MH231ESO/ESA Magnetic Specifications

DC Operating Parameters: $Ta=25 \,^{\circ}\text{C}$, $V_{DD}=3.0V$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating	Bops	N pole to branded side, B > BOP, Vout On	20		40	Gauss
Point	Bopn	S pole to branded side, B > BOP, Vout On	-40		-20	Gauss
Release Point	B_{RPS}	N pole to branded side, B < BRP, Vout Off	10		30	Gauss
	B _{RPN}	S pole to branded side, B < BRP,Vout Off	-30		-10	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		10		Gauss

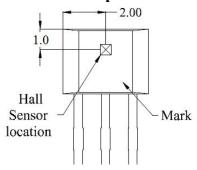

MH231ESO-AA Magnetic Specifications

DC Operating Parameters: $Ta=25 \, \text{°C}$, $V_{DD}=3.0 \, \text{V}$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating	Bops	N pole to branded side, B > BOP, Vout On	25		35	Gauss
Point	Bopn	S pole to branded side, B > BOP, Vout On	-35		-25	Gauss
Release Point	B _{RPS}	N pole to branded side, B < BRP, Vout Off	15		28	Gauss
	B _{RPN}	S pole to branded side, B < BRP,Vout Off	-28		-15	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		10		Gauss

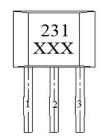
Sensor Location, package dimension and marking

UA Package



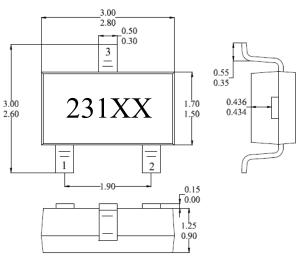
NOTES:

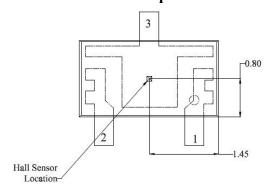
- 1. Controlling dimension: mm
- 2.Leads must be free of flash and plating voids
- 3.Do not bend leads within 1 mm of lead to package interface.
- 4.PINOUT:


Pin 1 VCC Pin 2 GND Pin 3 Output

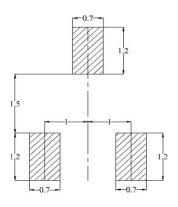
Hall Chip location

Output Pin Assignment


(Top view)



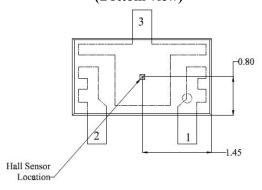
SO Package (SOT-23)


(Top View)

Hall Plate Chip Location

(For reference only)Land Pattern

NOTES:


- PINOUT (See Top View at left:) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- Controlling dimension: mm
- 3 Lead thickness after solder plating will be 0.254mm maximum
- XX: Date Code, Refer to DC table

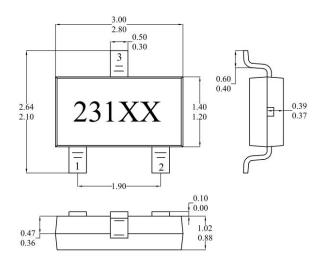
(Top View) 3.00 2.80 0.45 0.30 3 0.50 0.30 2.93 1.65 0.26 231XX 2.67 1.55 0.24 2 1.90 0.10 0.025 1.00Max 0.50

SA Package (SOT-23)

Hall Plate Chip Location

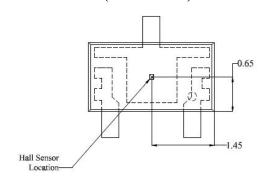
(Bottom view)

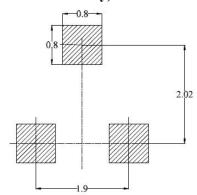
(For reference only) Land Pattern


NOTES:

- PINOUT (See Top View at left:) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- Lead thickness after solder plating will be 0.254mm maximu
- XX: Date Code, Refer to DC table

SP Package (PSOT-23)


(Top View)


NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

