

MH173 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

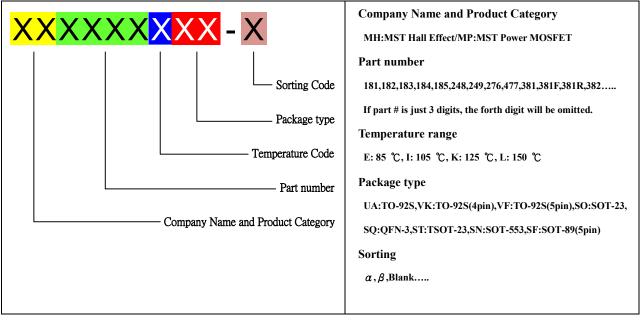
MH173 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH173 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The package style available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package.

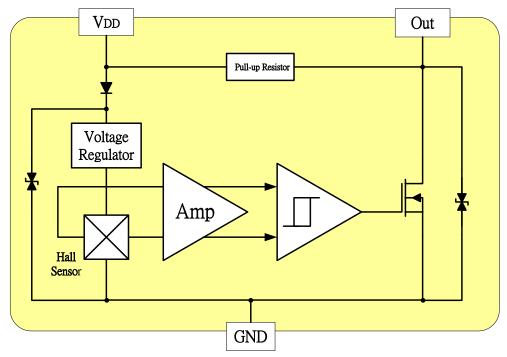
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits


- DMOS Hall IC Technology
- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- Reliable and low shifting on high Temp condition
- Switching offset compensation at typically 69kHz
- Pull-up resistor output
- Good ESD Protection
- 100% tested at 125 °C for K
- Custom sensitivity / Temperature selection are available
- Reverse bias protection on power supply pin.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

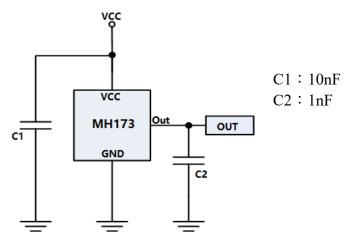


Ordering Information

Part No.	Temperature Suffix	Package Type
MH173KSO	K (-40°C to + 125°C)	SO (SOT-23)
MH173ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)

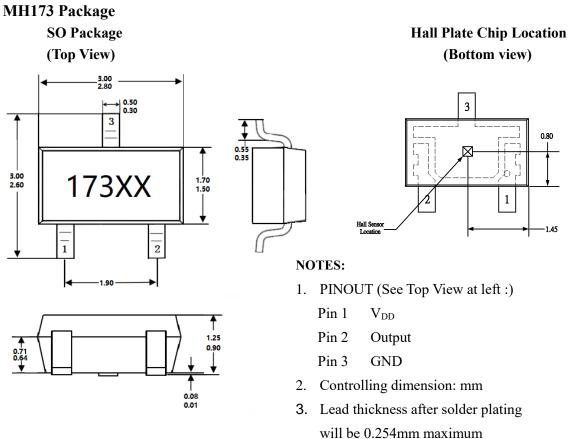
Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)


Characteristics		Values	Unit
Supply voltage, (VDD)		28	V
Output Voltage,(Vout)		28	V
Reverse Voltage, (VDD / Vout)		-0.3	V
Output current, (ISINK)		25	mA
	"E" Class	$-40 \sim +85$	°C
Operating Temperature Range, (TA)	"K" Class	-40 ~ +125	°C
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C
Maximum Junction Temp,(<i>TJ</i>)		150	°C
	(θ_{JA}) SO	543	°C/W
Thermal Resistance	(θ_{JC}) SO	410	°C/W
Package Power Dissipation, (PD) SO		230	mW

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications DC Operating Parameters : $T_A = +25^{\circ}C$, $V_{DD} = 12V$


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		26	V
Supply Current,(IDD)	B <bop< td=""><td></td><td>3.0</td><td>5.0</td><td>mA</td></bop<>		3.0	5.0	mA
Output Saturation Voltage, (Vsat)	B>Bop			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="<math">12V</brp,>			10.0	uA
Output Rise Time, (<i>T</i> _R)	RL=1.1KΩ, CL=20pF		0.04	0.45	uS
Output Fall Time, (TF)	RL=820Ω; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	HMB	4			KV
Operate Point, (BOP)	SO	5		60	GS
Release Point, (BRP)	SO	-60		-5	GS
Hysteresis,(BHYS)	Bop - Brp		60		GS

Typical application circuit

Sensor Location, Package Dimension and Marking

