

MH179 Specifications Micropower Hall Effect Latch

MH179 Hall-effect latch is a temperature stable, stress-resistant, mini-power IC. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

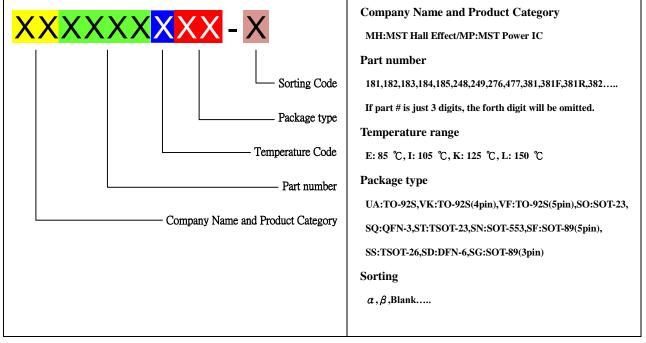
MH179 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH179 is rated for operation between the ambient temperatures -40°C and +85°C, and -40°C to 125°C for the K temperature range. for the E temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP-3 for through-hole mounting.

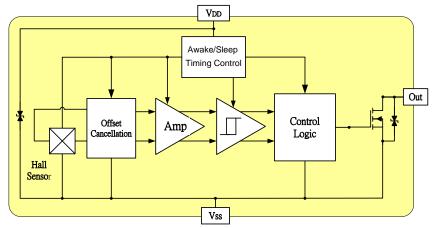
The package type is in a lead Halogen Free version was verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Strong RF noise protection
- 2.0 to 5.5V for battery-powered applications
- Operation down to 2.0V, Micro power consumption
- 100% tested at 125°C for K
- Low sensitivity drift in crossing of Temp range
- Ultra Low power consumption at 600uA (Avg)
- High ESD Protection, $HBM > \pm 4KV(min)$
- Open Drain output
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Speed sensing
- Position sensing
- Revolution counting
- Solid-State Switch
- Current sensing
- Revolution counting
- Solid-State Switch


Ordering Information

Part No.	Temperature Suffix	Package Type	
MH179KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)	
MH179EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)	
MH179ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)	

Custom sensitivity selection is available by MST sorting technology

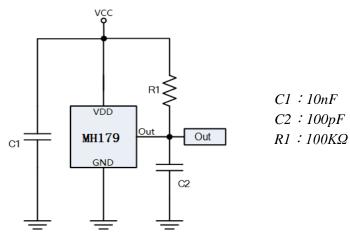
Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended.

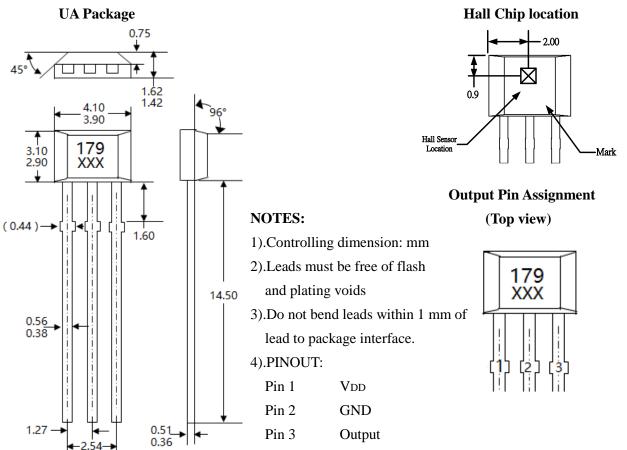
Absolute Maximum Ratings At (Ta=25°C)

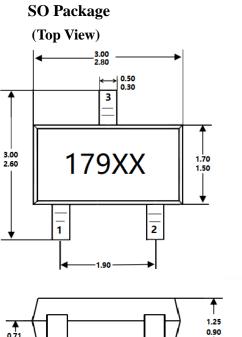
Characteristics		Values	Unit	
Supply voltage,(VDD)		6	V	
Output Voltage,(Vout)		6	V	
Reverse voltage, (VDD) (VOUT)		-0.3	V	
Magnetic flux density		Unlimited	Gauss	
Output current,(<i>Iour</i>)		10	mA	
On anotice a Tarras anotana Dan as (Ta	"E" version	-40 to +85	°C	
Operating Temperature Range, (Ta	"K" version	-40 to +125	°C	
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C	
Thermal Desiston of	$(heta_{\scriptscriptstyle JA})$ UA / SO	206 / 543	°C/W	
Thermal Resistance	$(heta_{\scriptscriptstyle JC})$ UA / SO	148 / 410	°C/W	
Package Power Dissipation, (P_D) UA / SO		606 / 230	mW	

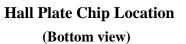
Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability.

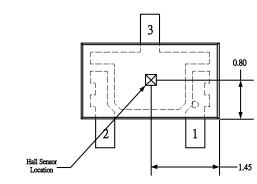

Electrical Specifications

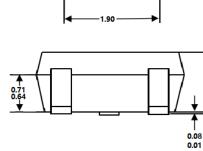
DC Operating Parameters $T_A=+25$ °C, $V_{DD}=3.0V$


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(V _{DD})	Operating	2.0		5.5	V
Supply Current,(<i>I</i> _{DD})	Awake State		2.0	5.0	mA
	Sleep State		7.0	10.0	uA
	Average		600	1000	uA
Output Saturation Voltage,	Iout=5mA,B>BOP			200	mV
Output Leakage Current,(Ioff)	IOFF $B < BRP$, $VOUT = 5.5V$			1.0	uA
Awake mode time,(<i>Taw</i>)	Operating		40	80	uS
Sleep mode time,(<i>TSL</i>)	Operating		160	320	uS
Duty Cycle, (D, C)			20		%
Response Time, (T_{RES})				2000	Hz
Output Rise Time, (<i>T</i> _{<i>R</i>})	RL=1K Ω , CL =20pF		0.18	0.45	uS
Output Fall Time, (<i>T_F</i>)	RL=1K Ω ; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operating Point (BOP)	S pole to branded side, B > BOP, Vout On	5		40	Gauss
Release Point (BRP)	N pole to branded side, B < BRP, Vout	-40		-5	Gauss
Hysteresis (BHYS)	BOP - BRP		40		Gauss


Typical Application circuit


Sensor Location, Package Dimension and Marking MH179 Package




t(0.55 0.35

NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating
 - will be 0.254mm maximum

