

MH261 Specifications Micropower Hall Effect Switch

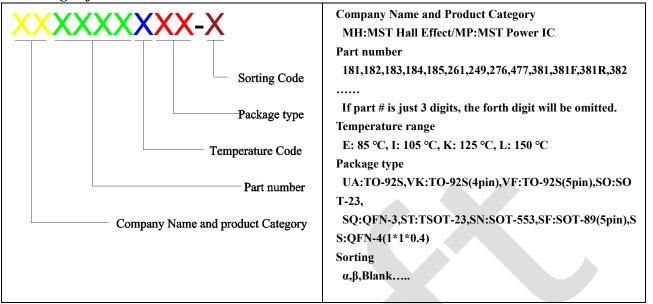
MH261 Hall-effect sensor is a temperature stable, stress-resistant, micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH261 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of omni-polar magnetic fields for operation.

MH261 is rated for operation between the ambient temperatures –40°C and + 85°C for the E temperature range. Package SS is a DFN 1*1*0.4, a miniature low-profile surface-mount package.

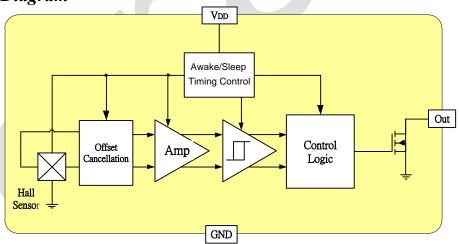
The package type is in a Halogen Free version has been verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Strong RF noise protection
- 1.70 to 5.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.70V, Micro power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp range
- Ultralow power consumption at 5uA (Avg)
- High ESD Protection, HBM > ±4KV(min)
- Open Drain output
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter
- PDVD
- NB


Ordering Information

Part No.	Temperature Suffix	Package Type
MH261ESS	E (-40°C to +85°C)	SS (QFN1*1-4L)

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

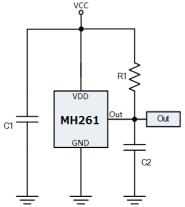
Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

MH261 Specifications Micropower Hall Effect Switch

Absolute Maximum Ratings At (Ta=25°C)

Characteristic	Values	Unit		
Supply voltage, (V_{DD})	6	V		
Output Voltage,(Vout)	6	V		
Reverse voltage, (V_{DD}) (V_{OUT})	-0.3	V		
Magnetic flux density	Unlimited	Gauss		
Output current(I _{SINK})	1	mA		
Operating temperature range, (<i>Ta</i>)	-40 to +85	°C		
Storage temperature range, (<i>Ts</i>)	-55 to +150	°C		
Maximum Junction Temp,(<i>Tj</i>)	150	°C		
Thermal Resistance	$(\theta_{JA}) \text{ UA } / \text{SS}$	206/540	°C/W	
Thermal Resistance	(θ_{JC}) UA / SS	148/390	°C/W	
Package Power Dissipation, (P_D) UA/SS	606/230	mW		

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

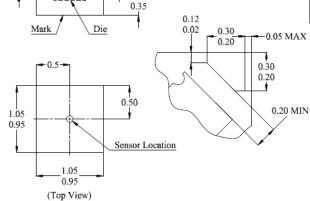

Electrical Specifications

DC Operating Parameters TA=+25°C, VDD=3V

Parameters		Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})		Operating	1.7		5.5	V
Supply Current, (I_{DD})		Awake State		1.5	3.0	mA
		Sleep State		3.5	7.0	μΑ
		Average		5.0	10	uA
Output Leakage Current, (Ioff)		$B < BRP_X$, $V_{OUT} = 5.5V$			1.0	uA
Output Saturation Voltage, (V _{DSON})		Iout=5mA,B>BOP			200	mV
Awake mode time, (Taw)		Operating		40	80	uS
Sleep mode time, (T_{SL})		Operating		40	80	mS
Duty Cycle, (<i>D</i> , <i>C</i>)				0.1		%
Response Time, (T_{RES})					10	Hz
ESD		НВМ	4			KV
Operating Point	Bops	S pole to branded side, B	20		60	Gauss
	B _{OPN}	N pole to branded side, B >	-60		-20	Gauss
Release Point	B _{RPS}	S pole to branded side, B <	10		50	Gauss
	B_{RPN}	N pole to branded side, B <	-50		-10	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		10		Gauss

Typical Application circuit

C1:10nF

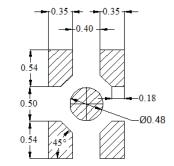

C2: 100pF

 $R1:100K\Omega$

Sensor Location, Package Dimension and Marking

SS Package (DFN 1.0*1.0-4L)

A(100:1)


NOTES:

Controlling dimension: mm

- 1. Leads must be free of flash and plating voids
- 2. Lead thickness after solder plating will be 0.254mm maximum
- 3. PINOUT:

Pin No.	Pin Name	Function
1	$ m V_{DD}$	Power Supply
2/5	V_{SS}	Ground
3	NC	
4	Vout	Output

-0.05 MAX 4. (For reference only) Land pattern

