

MH179 Hall-effect latch is a temperature stable, stress-resistant, mini-power IC. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

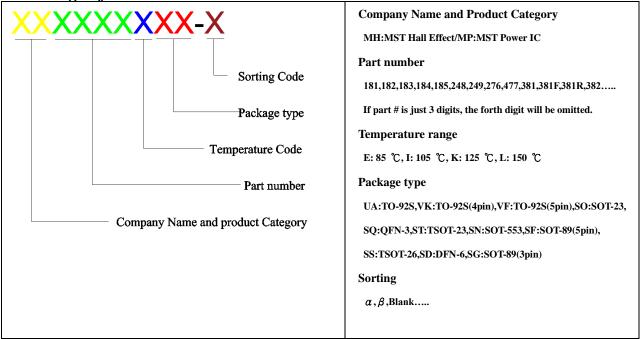
MH179 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH179 is rated for operation between the ambient temperatures -40° C and $+85^{\circ}$ C, and -40° C to 125° C for the K temperature range. for the E temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP-3 for through-hole mounting.

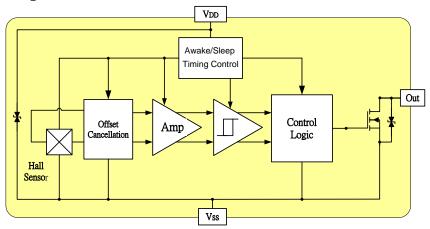
The package type is in a lead Halogen Free version was verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Strong RF noise protection
- 2.0 to 5.5V for battery-powered applications
- Operation down to 2.0V, Micro power consumption
- 100% tested at 125°C for K
- Low sensitivity drift in crossing of Temp range
- Ultra Low power consumption at 600uA (Avg)
- High ESD Protection, HBM $> \pm 4$ KV(min)
- Open Drain output
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Speed sensing
- Position sensing
- Revolution counting
- Solid-State Switch
- Current sensing
- Revolution counting
- Solid-State Switch


Ordering Information

Part No.	Temperature Suffix	Package Type	
MH179KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)	
MH179EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH179ESO	$E \left(-40^{\circ}C \text{ to } + 85^{\circ}C\right)$	SO (SOT-23)	

Custom sensitivity selection is available by MST sorting technology

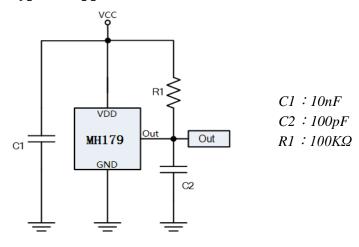
Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit
Supply voltage,(VDD)			6	V
Output Voltage,(Vout)			6	V
Reverse voltage, (VDD) (VOUT)			-0.3	V
Magnetic flux density			Unlimited	Gauss
Output current,(<i>Iovr</i>)			10	mA
On anoting Towns and true Pane	"E" version		-40 to +85	°C
Operating Temperature Range	e, (<i>1a</i>)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C
Maximum Junction Temp, (Tj)			150	°C
Thermal Resistance	(θ_{JA}) UA / SO		206 / 543	°C/W
	(θ_{JC}) UA / SO		148 / 410	°C/W
Package Power Dissipation, (P_D) UA / SO			606 / 230	mW

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Electrical Specifications

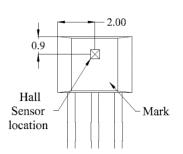
DC Operating Parameters $T_A=+25$ °C, $V_{DD}=3.0V$

Parameters	Test Conditions		Тур	Max	Units
Supply Voltage, (V_{DD})	Operating			5.5	V
	Awake State		2.0	5.0	mA
Supply Current,(I_{DD})	Sleep State		7.0	10.0	uA
	Average		600	1000	uA
Output Saturation Voltage,	Iout=5mA,B>BOP			200	mV
Output Leakage Current,(Ioff)	IOFF B <brp, vout="5.5V</td"><td></td><td></td><td>1.0</td><td>uA</td></brp,>			1.0	uA
Awake mode time,(<i>Taw</i>)	Operating		40	80	uS
Sleep mode time,(<i>TSL</i>)	Operating		160	320	uS
Duty Cycle, (D,C)			20		%
Response Time, (T_{RES})				2000	Hz
Output Rise Time, (T_R)	$RL=1K\Omega$, $CL=20pF$		0.18	0.45	uS
Output Fall Time, (<i>TF</i>)	RL=1KΩ; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operating Point (BOP)	S pole to branded side, B > BOP, Vout On	5		40	Gauss
Release Point (BRP)	N pole to branded side, B < BRP, Vout	-40		-5	Gauss
Hysteresis (BHYS)	BOP - BRP		40		Gauss

Typical Application circuit

Sensor Location, Package Dimension and Marking **UA Package**

4.10 3.90

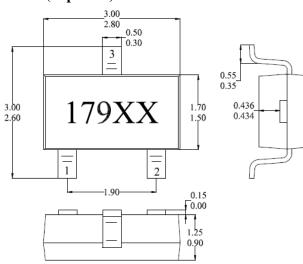


NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

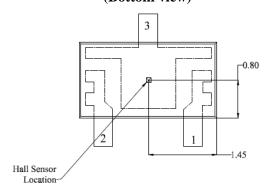
Pin 1 VDD Pin 2 **GND** Pin 3 Output

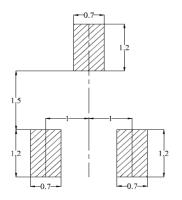
Hall Chip location



Output Pin Assignment (Top view)

179 XXX


SO Package (Top View)


NOTES:

- 1. PINOUT (See Top View at left :)
 - $Pin \ 1 \qquad V_{DD}$
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

