

MH272 Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

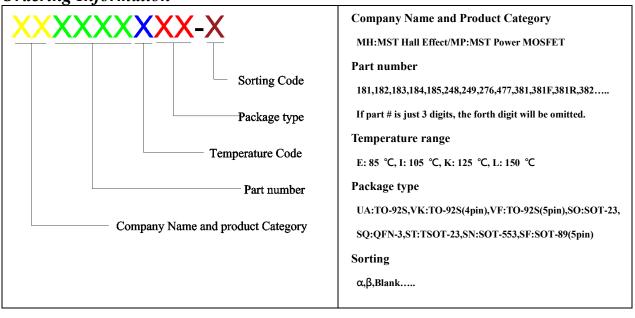
MH272 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and open drain output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

MH272 is rated for operation between the ambient temperatures -40°C and + 85°C for the E temperature range. and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

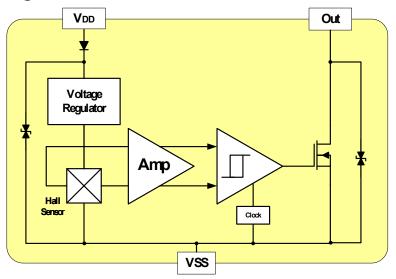
The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits


- DMOS Hall IC Technology.
- Operation range from 2.5V to 26V.
- Omni polar, output switches with absolute value of North or South pole from magnet.
- Reverse bias protection on power supply pin.
- High Sensitivity for reed switch replacement applications.
- Low sensitivity drift in crossing of Temp range.
- High ESD Protection, HBM>±4KV(min)
- Output Current limit in 100mA.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch.
- Limit switch.
- Current limit.
- Interrupter.
- Magnet proximity sensor for reed switch replacement.


Ordering Information

Part No.	Temperature Suffix	Package Type
MH272KUA	K (-40°C to + 125°C)	UA (TO-92S)
MH272EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH272KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH272ESO	E $(-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)

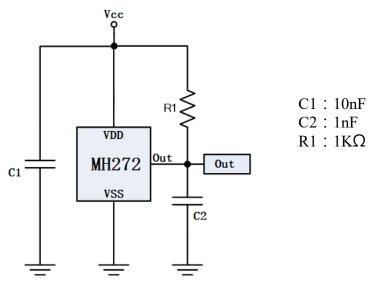
KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

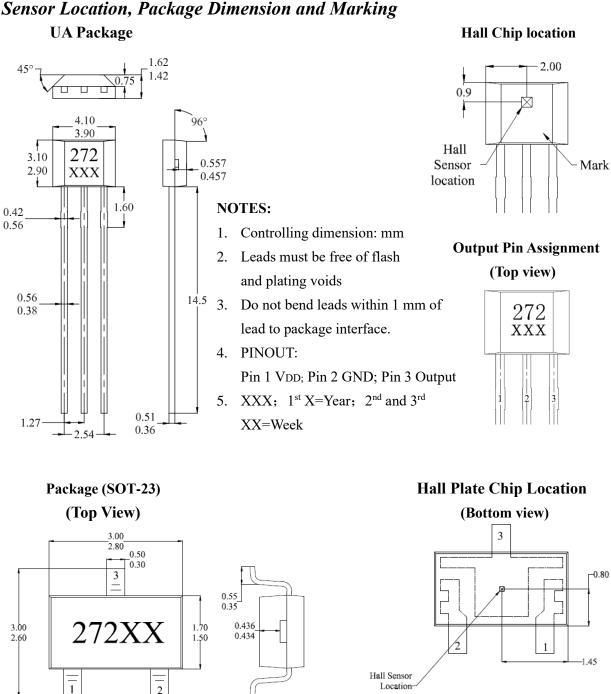
MH 272 Specifications High Voltage Omni polar Hall Effect Switch

Absolute Maximum Ratings At (Ta=25°C)

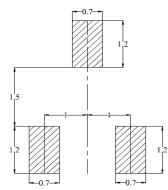
Characteristics			Values	Unit	
Supply voltage,(<i>VDD</i>)			28	V	
Output Voltage,(Vout)			28	V	
Reverse Voltage, (VDD / Vout)			-28/-0.3	V	
Output current, (<i>Isink</i>)			25	mA	
Operating Temperature Range, (<i>T</i> _A)		"E" Class	$-40 \sim +85$	°C	
		"K" Class	-40 ~ +125	°C	
Storage temperature Range, (<i>Ts</i>)			-55 ~ +150	°C	
Maximum Junction Temp,(<i>T</i> _J)			150	°C	
	(θ_{JA}) UA	/ SO	206 / 543	°C/w	
Thermal Resistance	(<i>θ</i> лс) UA	/ SO	148 / 410	°C/w	
Package Power Dissipation, (PD)		606 / 230	mW		


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications


DC Operating Parameters : $T_A = +25$ °C, $V_{DD} = 12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		26.0	V
Supply Current,(<i>IDD</i>)	B <bop< td=""><td></td><td>2.5</td><td>3.5</td><td>mA</td></bop<>		2.5	3.5	mA
Output Saturation Voltage, (VDSON)	Iout=20mA,B>Bop		300	500	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="<math">12V</brp,>			10.0	uA
Output Limited Current, (I _{CO})	B>B _{OP}		100		mA
Power-On Time, (T_P)				100	uS
Output Switch Time, (T_{SW})				100	uS
Output Switch Frequency, (F_{SW})		5			kHz
Output Rise Time, (T_R)	$R_L=1K\Omega$, $C_L=20pF$		0.1	0.45	uS
Output Fall Time, (<i>T_F</i>)	RL=1k Ω ; CL =20pF		6.0	10	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, B_{OP}	B> B _{OP} X , V _{OUT} On	20(-40)	30(-30)	40(-20)	Gauss
Release Point, B_{RP}	B< B _{RP} X , V _{OUT} Off	11(-36)	20(-20)	36(-11)	Gauss
Hysteresis, (B_{HYS})	BOP - BRP		10		Gauss


Typical application circuit

(For reference only)Land Pattern

- 1. PINOUT (See Top View at left :) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm

1.90

3. Lead thickness after solder plating will be 0.254mm maximum

0.15

0.00 1 1 1.25 0.90

4. XX: Date Code, Refer to DC table