MH 275 Specifications
 Low Sensitivity Omni-polar Hall Switch

MH275 Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

MH275 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and open drain output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.
MH275 is rated for operation between the ambient temperatures $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ for the E temperature range. and $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits

- DMOS Hall IC Technology.
- Operation range from 2.5 V to 26 V .
- Omni polar, output switches with absolute value of North or South pole from magnet.
- Reverse bias protection on power supply pin.
- High Sensitivity for reed switch replacement applications.
- Low sensitivity drift in crossing of Temp range.
- High ESD Protection, $\mathrm{HBM}> \pm 4 \mathrm{KV}(\mathrm{min})$
- Output Current limit in 100 mA .
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch.
- Limit switch.
- Current limit.
- Interrupter.
- Magnet proximity sensor for reed switch replacement.

Ordering Information

Part No.	Temperature Suffix	Package Type
MH275KUA	$\mathrm{K}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$	UA (TO-92S)
MH275EUA	$\mathrm{E}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	UA (TO-92S)
MH275KSO	$\mathrm{K}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$	SO (SOT-23)
MH275ESO	E $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.
Functional Diagram

MH 275 Specifications
 Low Sensitivity Omni-polar Hall Switch

Absolute Maximum Ratings At $\left(T a=25^{\circ} \mathrm{C}\right)$

Characteristics	Values	Unit
Supply voltage, $\left(V_{D D}\right)$	28	V
Output Voltage, $\left(V_{O U T}\right)$	28	V
Reverse Voltage, $\left(V_{D D} / V_{O U T}\right)$	$-28 /-0.3$	V
Output current, $\left(I_{S I N K}\right)$	25	mA
Operating Temperature Range, $\left(T_{A}\right)$	"E" Class	$-40 \sim+85$
	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Storage temperature Range, $\left(T_{S}\right)$	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Maximum Junction Temp, $\left(T_{J}\right)$	150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\left(\theta_{J A}\right) \mathrm{UA} / \mathrm{SO}$	${ }^{\circ} \mathrm{C} / \mathrm{w}$
	$\left(\theta_{J C}\right) \mathrm{UA} / \mathrm{SO}$	$206 / 543$
${ }^{\circ} \mathrm{C} / \mathrm{w}$		
Package Power Dissipation, $\left(P_{D}\right)$	$148 / 410$	mW

Note: Do not apply reverse voltage to V_{DD} and $\mathrm{V}_{\mathrm{Out}}$ Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_{A}=+25^{\circ} \mathrm{C}, V_{D D}=12 \mathrm{~V}$

Parameters	Test Conditions	Min	Typ	Max	Units	
Supply Voltage, ($V_{D D}$)	Operating	2.5		26.0	V	
Supply Current, ($I_{D D}$)	$\mathrm{B}<\mathrm{B}_{\text {OP }}$		2.5	5.0	mA	
Output Saturation Voltage, ($V_{D S O N}$)	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~B}>\mathrm{B}_{\text {OP }}$		300	500.0	mV	
Output Leakage Current, (IOFF)	$\mathrm{I}_{\text {OFF }} \mathrm{B}<\mathrm{B}_{\text {RP }}, \mathrm{V}_{\text {OUT }}=20 \mathrm{~V}$			10.0	uA	
Output Limited Current, ($I_{C O}$)	$\mathrm{B}>\mathrm{B}_{\text {OP }}$		100		mA	
Power-On Time, $\left(T_{P O}\right)$	Power-On			100	uS	
Output Switch Time, ($T_{S W}$)	Operating			100	uS	
Output Switch Frequency, $\left(F_{S W}\right)$	Operating	5			kHz	
Output Rise Time, $\left(T_{R}\right)$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		0.1	0.45	uS	
Output Fall Time, $\left(T_{F}\right)$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		6.0	10	uS	
Electro-Static Discharge	HBM	4			KV	
Operate Point, $B_{O P S}\left(B_{O P N}\right)$	$\mathrm{B}>$ Bops($\mathrm{B}<$ Bopn), Vout On	140(-250)		250(-140)	Gauss	
Release Point, $B_{R P S}\left(B_{R P N}\right)$	$\mathrm{B}<\mathrm{B}_{\mathrm{RPs}}\left(\mathrm{B}>\mathrm{B}_{\text {rps }}\right)$, Vout Off	95(-205)		205(-95)	Gauss	
Hysteresis, ($B_{H Y S}$)	\|BoPX- BrPX			45		Gauss

Typical application circuit

C1: 10nF
C2: 1nF
R1: $1 \mathrm{~K} \Omega$

Sensor Location, Package Dimension and Marking

UA Package

Package (SOT-23)
(Top View)

NOTES:

1. Controlling dimension: mm
2. Leads must be free of flash and plating voids
3. Do not bend leads within 1 mm of lead to package interface.
4. PINOUT:

Pin 1 VDD
Pin 2 GND
Pin 3 Output
5. $\mathrm{XXX} ; 1^{\text {st }} \mathrm{X}=$ Year; $2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{XX}=$ Week

Hall Chip location

Output Pin Assignment (Top view)

Hall Plate Chip Location
(Bottom view)

(For reference only) Land Pattern

