

MH 275 Specifications Low Sensitivity Omni-polar Hall Switch

MH275 Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

MH275 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and open drain output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

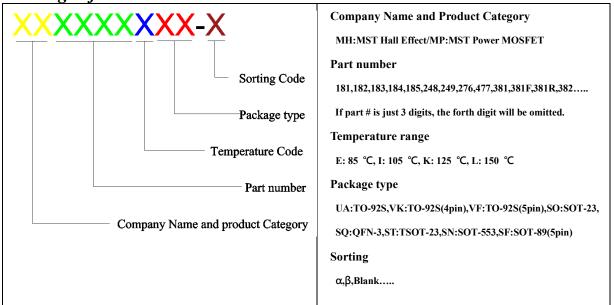
MH275 is rated for operation between the ambient temperatures –40°C and + 85°C for the E temperature range. and –40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits

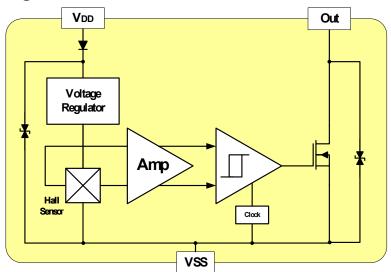
- DMOS Hall IC Technology.
- Operation range from 2.5V to 26V.
- Omni polar, output switches with absolute value of North or South pole from magnet.
- Reverse bias protection on power supply pin.
- High Sensitivity for reed switch replacement applications.
- Low sensitivity drift in crossing of Temp range.
- High ESD Protection, HBM>±4KV(min)
- Output Current limit in 100mA.
- RoHS compliant 2011/65/EU and Halogen Free

Applications


- Solid state switch.
- Limit switch.
- Current limit.
- Interrupter.
- Magnet proximity sensor for reed switch replacement.

MH 275 Specifications

Low Sensitivity Omni-polar Hall Switch


Ordering Information

Part No.	Temperature Suffix	Package Type	
MH275KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)	
MH275EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH275KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)	
MH275ESO	$E \left(-40^{\circ}C \text{ to } + 85^{\circ}C\right)$	SO (SOT-23)	

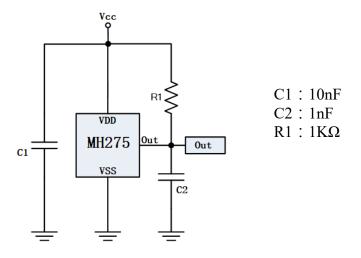
KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

MH 275 Specifications Low Sensitivity Omni-polar Hall Switch

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit	
Supply voltage, (VDD)			28	V	
Output Voltage, (V_{OUT})			28	V	
Reverse Voltage, (V_{DD} / V_{OUT})			-28/-0.3	V	
Output current, (ISINK)			25	mA	
On the Town of the Post	- (T)	"E" Class	-40 ~ +85	°C	
Operating Temperature Range, (T_A)		"K" Class	-40 ~ +125	°C	
Storage temperature Range, (<i>Ts</i>)			-55 ∼ +150	°C	
Maximum Junction Temp, (T _J)			150	°C	
Thermal Resistance	(θ_{JA}) UA/ SO		206 / 543	°C/w	
	(θsc) UA/ SO		148 / 410	°C/w	
Package Power Dissipation, (P_D)			606 / 230	mW	

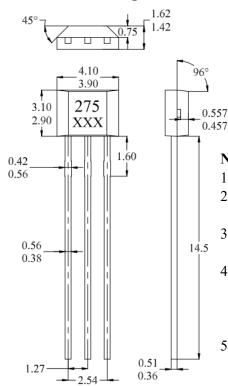

 $\textit{Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.}$

Electrical Specifications

DC Operating Parameters: $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	2.5		26.0	V
Supply Current, (I_{DD})	B <b<sub>OP</b<sub>		2.5	5.0	mA
Output Saturation Voltage, (V_{DSON})	$I_{OUT}=20\text{mA}, B>B_{OP}$		300	500.0	mV
Output Leakage Current, (IOFF)	I_{OFF} B <b<sub>RP, $V_{OUT} = 20V$</b<sub>			10.0	uA
Output Limited Current, (<i>I_{CO}</i>)	B>B _{OP}		100		mA
Power-On Time, (T_{PO})	Power-On			100	uS
Output Switch Time, (T_{SW})	Operating			100	uS
Output Switch Frequency, (F_{SW})	Operating	5			kHz
Output Rise Time, (T_R)	$R_L=1K\Omega$, $C_L=20pF$		0.1	0.45	uS
Output Fall Time, (T_F)	$R_L=1k\Omega$; $C_L=20pF$		6.0	10	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, $B_{OPS}(B_{OPN})$	B>Bops(B <bopn), on<="" td="" vout=""><td>140(-250)</td><td></td><td>250(-140)</td><td>Gauss</td></bopn),>	140(-250)		250(-140)	Gauss
Release Point, $B_{RPS}(B_{RPN})$	B <brps(b>Brpn), Vout Off</brps(b>	95(-205)		205(-95)	Gauss
Hysteresis, (B_{HYS})	Bopx-Brpx		45		Gauss

Typical application circuit



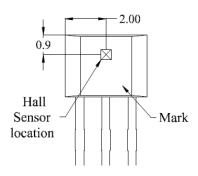
MH 275 Specifications

Low Sensitivity Omni-polar Hall Switch

Sensor Location, Package Dimension and Marking

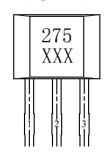
UA Package

NOTES:

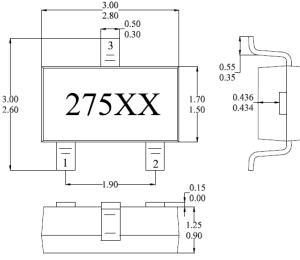

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 VDD Pin 2 **GND**

Pin 3 Output 5. XXX: 1st X=Year:


2nd and 3rd XX=Week

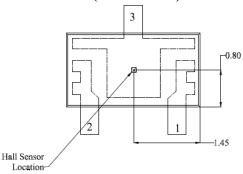
Hall Chip location


Output Pin Assignment

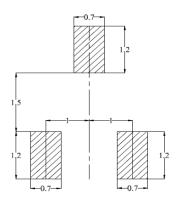
(Top view)

Package (SOT-23)

(Top View)



NOTES:


- 1. PINOUT (See Top View at left:) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

Hall Plate Chip Location

(Bottom view)

(For reference only) Land Pattern

