

MH186 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH186 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

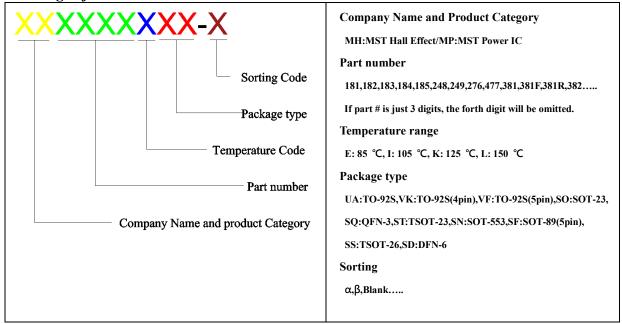
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH186 is rated for operation between the ambient temperatures –40°C and 85°C for the E temperature range, and –40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP-3 for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

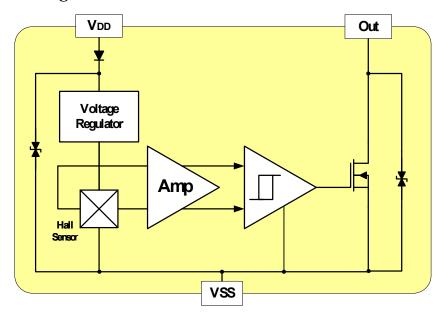
Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

080619 Page 1 of 4 Rev 1.02


Ordering Information

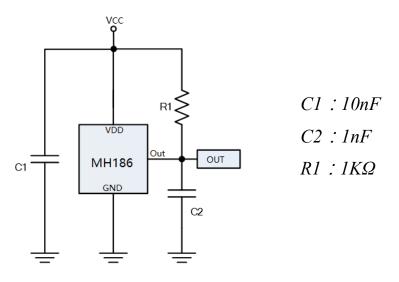
Part No.	Temperature Suffix	Package Type	
MH186KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)	
MH186KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)	
MH186EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH186ESO	E $(-40$ °C to $+85$ °C)	SO (SOT-23)	

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

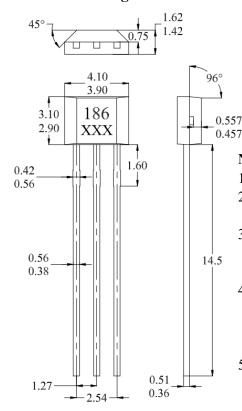
Characteristics			Values	Unit
Supply voltage,(VDD)			28	V
Output Voltage,(Vout)			28	V
Reverse Voltage, (VDD) (VOUT)			-28/-0.3	V
Output current , (Iour)		25	mA	
Otime Towns to the D	· (T.)	"E" version	-40 to +85	°C
Operating Temperature Range	e, (1a)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C
Maximum Junction Temp, (Tj)			150	°C
Thermal Resistance	$(heta_{ja}$	a) UA / SO	206 / 543	°C/W
Thermal Resistance	(θ_{j})	c) UA / SO	148 / 410	°C/W
Package Power Dissipation, (PD) UA/SO		606 / 230	mW	

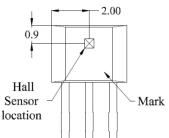

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.0		26.0	V
Supply Current,(<i>I</i> _{DD})	B <b<sub>OP</b<sub>		3.0	5.0	mA
Output Saturation Voltage, (Vsat)	I _{OUT} = 20 mA, B>B _{OP}			400.0	mV
Output Leakage Current, (Ioff)	Ioff B $<$ Brp, Vout = 12V			10.0	uA
Output Rise Time, (T_R)	RL=1.1K Ω , CL =20pF			0.45	uS
Output Fall Time, (<i>T_F</i>)	RL=820Ω; CL =20pF			0.45	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, (BOP)	UA(SO)	5(-60)		60(-5)	Gauss
Release Point, (BRP)	UA(SO)	-60(5)		-5(60)	Gauss
Hysteresis,(BHYS)	BOP - BRP		60		Gauss


Typical application circuit


080619 Page 3 of 4 Rev 1.02

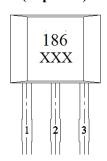
Sensor Location, Package Dimension and Marking

UA Package

0.9

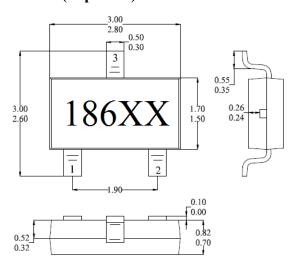
Hall Chip location

1. Controlling dimension: mm

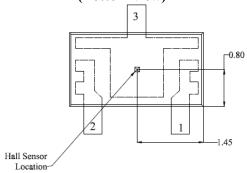

- Leads must be free of flash and plating voids
- 3. Do not bend leads within 1mm of lead to package interface.
- 4. PINOUT:

NOTES:

Pin 1	VDD
Pin 2	GND
Pin 3	Outp

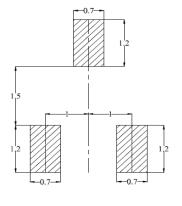

5. XXX; 1st X=Year; 2nd and 3rd XX=Week

Output Pin Assignment (Top view)


Package (SOT-23)

(Top View)

Hall Plate Chip Location


(Bottom view)

(For reference only) Land Pattern

NOTES:

- 1. PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

080619 Page 4 of 4 Rev 1.02