

MH258 Hall-effect sensor is a temperature stable, stress-resistant, micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

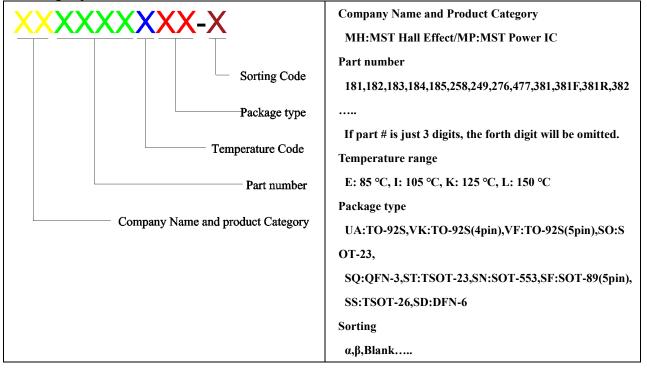
MH258 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

MH258 is rated for operation between the ambient temperatures -40°C and + 85°C for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SP is an PSOT-23(1.1 mm nominal height), ST is an TSOT-23 (0.7 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

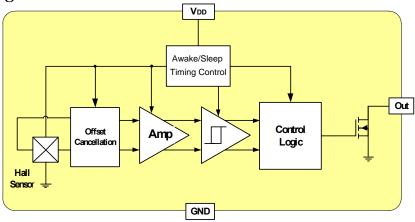
The package type is in a lead Halogen Free version was verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Strong RF noise protection
- 1.70 to 5.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.70V, Micro power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp range
- Ultra Low power consumption at 5uA (Avg)
- High ESD Protection, HBM $> \pm 4$ KV(min)
- Open Drain output
- RoHS compliant 2011/65/EU and Halogen Free.

Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter
- PDVD
- NB


Ordering Information

Part No.	Temperature Suffix	Package Type
MH258EUA	E $(-40$ °C to $+85$ °C)	UA (TO-92S)
MH258ESO	E $(-40$ °C to $+85$ °C)	SO (SOT-23)
MH258EST	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	ST (TSOT-23)
MH258ESP	E (- 40 °C to + 85 °C)	SP (PSOT-23)

Custom sensitivity selection is available by MST sorting technology

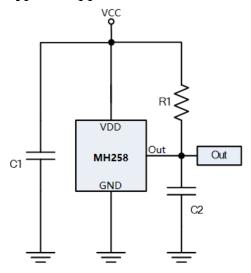
Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings At (Ta=25°C)

Cha	Values	Unit	
Supply voltage, (V_{DD})	6	V	
Output Voltage, (Vout)	6	V	
Reverse voltage, (V_{DD}) (V_{OUT})	-0.3	V	
Magnetic flux density	Unlimited	Gauss	
Output current (I_{SINK})	10	mA	
Operating temperature range, (-40 to +85	°C	
Storage temperature range, (Ts	-55 to +150	°C	
Maximum Junction Temp, (Tj)		150	°C
Thermal Resistance	(θJA) UA / SO / ST / SP	206 / 543 / 310 / 625	°C/W
	(θJC) UA / SO / ST /SP	148 / 410 / 223 / 116	°C/W
Package Power Dissipation, (F	606 / 230 / 400 / 200	mW	

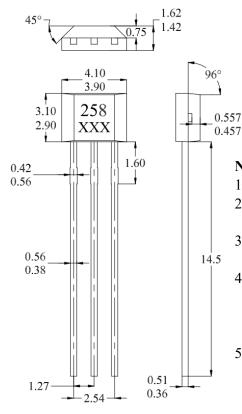
Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Electrical Specifications

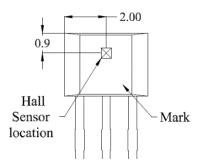
DC Operating Parameters TA=+25°C, VDD=3V

Parameter Parameter		Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})		Operating	1.7		5.5	V
Supply Current,(I _{DD})		Awake State		1.5	3.0	mA
		Sleep State		3.5	7.0	μΑ
		Average		5.0	10	uA
Output Leakage Current, (Ioff)		B < BRPx, $VOUT = 5.5V$			1.0	uA
Output Saturation Voltage,		Iout=5mA,B>BOP			200	mV
Awake mode time,(<i>Taw</i>)		Operating		40	80	uS
Sleep mode time, (T_{SL})		Operating		40	80	mS
Duty Cycle,(D,C)				0.1		%
Response Time, (T_{RES})					10	Hz
ESD		HBM	4			KV
Operating Point	BOPS	S pole to branded side, B > BOP, Vout On	20		55	Gauss
	BOPN	N pole to branded side, B > BOP, Vout On	-55		-20	Gauss
Release Point	BRPS	S pole to branded side, B < BRP, Vout Off	10		45	Gauss
	BRPN	N pole to branded side, B < BRP, Vout Off	-45		-10	Gauss
Hysteresis	BHYS	BOPx - BRPx		10		Gauss

Typical Application circuit

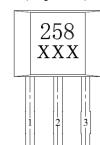

C1:10nF

C2: 100pF


R1: 100K Ω

Sensor Location, package dimension and marking

UA Package

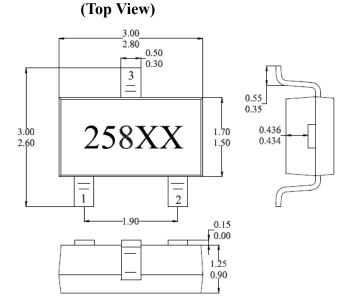


Hall Chip location

Output Pin Assignment

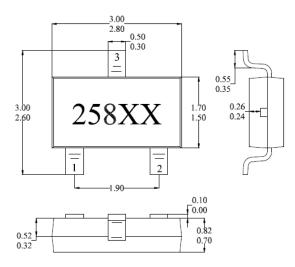
(Top view)

NOTES:


- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 VDD Pin 2 GND Pin 3 Output

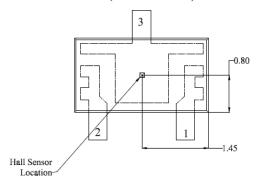
5. XXX; 1st X=Year; 2nd and 3rd XX=Week


Package (SOT-23)

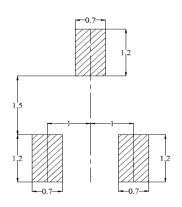
NOTES:

- PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

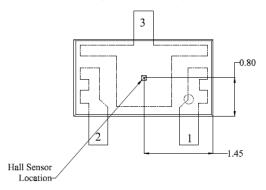
Package (TSOT-23) (Top View)

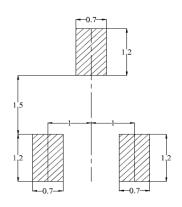


NOTES:

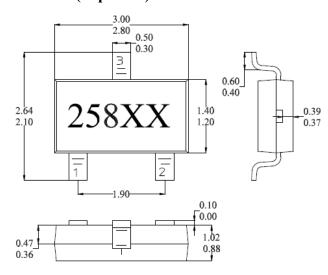

- 1. PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

Hall Plate Chip Location

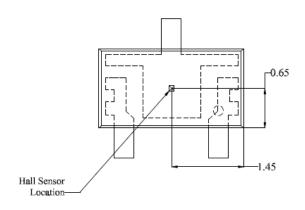

(Bottom view)

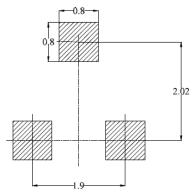

(For reference only)Land Pattern

Hall Plate Chip Location (Bottom view)



(For reference only)Land Pattern


Package (PSOT-23) (Top View)


NOTES:

- PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

