Magnesensor Technology

MH273

High Voltage Pull High Res Omnipolar Hall Switch

MH273 Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

MH273 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and built-in pull high resistance output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

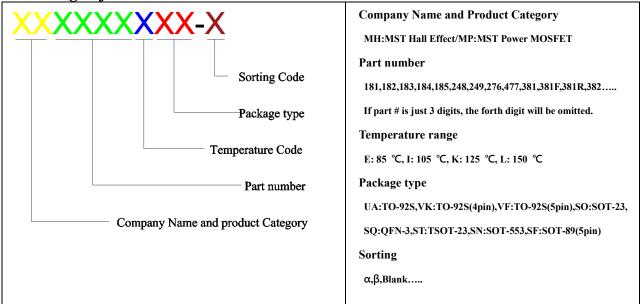
MH273 is rated for operation between the ambient temperatures -40°C and $+85^{\circ}\text{C}$ for the E temperature range. and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits

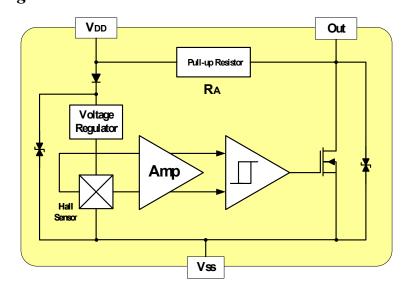
- DMOS Hall IC Technology.
- Operation range from 2.5V to 26V.
- Omni polar, output switches with absolute value of North or South pole from magnet.
- High Sensitivity for reed switch replacement applications.
- Low sensitivity drift in crossing of Temp range.
- High ESD Protection, HBM>±4KV(min)
- Output Current limit in 100mA
- RoHS compliant 2011/65/EU and Halogen Free

Applications


- Solid state switch.
- Limit switch.
- Current limit
- Interrupter.
- Current sensing.
- Magnet proximity sensor for reed switch replacement

MH273

High Voltage Pull High Res Omnipolar Hall Switch


Ordering Information

Part No.	Temperature Suffix	Package Type	
MH273KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)	
MH273EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH273KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)	
MH273ESO	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	SO (SOT-23)	

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

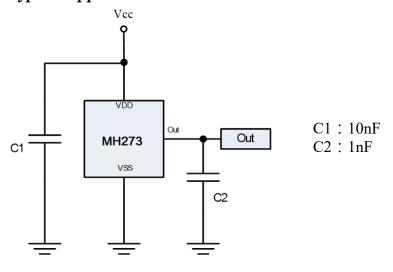
Functional Diagram

MH273

High Voltage Pull High Res Omnipolar Hall Switch

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit	
Supply voltage, (VDD)			28	V	
Output Voltage, (Vout)			28	V	
Reverse Voltage, (VDD / Vout)			-0.3/-0.3	V	
Output current, (ISINK)			25	mA	
Operating Temperature Range, (T _A)		"E" Class	-40 ~ +85	°C	
		"K" Class	-40 ~ +125	°C	
Storage temperature Range, (<i>Ts</i>)			-55 ∼ +150	°C	
Maximum Junction Temp, (T _J)			150	°C	
Thermal Resistance	(θ_{JA}) UA/ SO		206 / 543	°C/w	
	(θ _{JC}) UA/ SO		148 / 410	°C/w	
Package Power Dissipation, (PD)			606 / 230	mW	

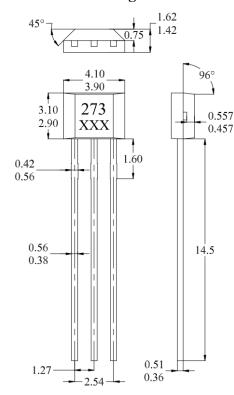

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

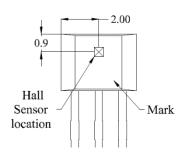
DC Operating Parameters : $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	2.5		26.0	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td>2.5</td><td>5.0</td><td>mA</td></bop<>		2.5	5.0	mA
Output Saturation Voltage, (V_{DSON})	Iout=20mA,B>BOP		300	500.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="20V</td"><td></td><td></td><td>10.0</td><td>uA</td></brp,>			10.0	uA
Output Limited Current, (I_{CO})	B>B _{OP}		100		mA
Power-On Time, (T_{PO})	Power-On			100	uS
Output Switch Time, (T_{SW})	Operating			100	uS
Output Switch Frequency, (F_{SW})	Operating	5			kHz
Output Rise Time, (T_R)	$C_L = 20pF$		0.1	0.45	uS
Output Fall Time, (T_F)	$C_L = 20pF$		6.0	10	uS
Electro-Static Discharge	HBM	4			KV
Pull-up Resistor, (RA)			10		ΚΩ
Operate Point, $B_{OPS}(B_{OPN})$	B>B _{OPS} (B <b<sub>OPN), V_{OUT} On</b<sub>	50(-110)		110(-50)	Gauss
Release Point, $B_{RPS}(B_{RPN})$	B <b<sub>RPS(B>B_{RPN}), V_{OUT} Off</b<sub>	30(-90)		90(-30)	Gauss
Hysteresis, (B_{HYS})	BOP - BRP		20		Gauss

Typical application circuit



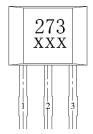
MH273


High Voltage Pull High Res Omnipolar Hall Switch

Sensor Location, Package Dimension and Marking

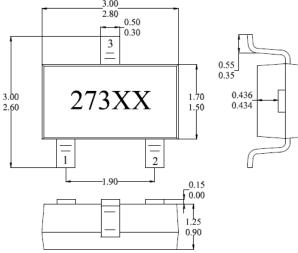
UA Package

Hall Chip location

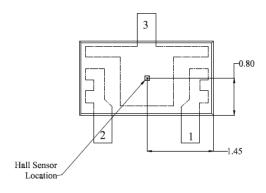

NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 **VDD** Pin 2 **GND** Pin 3 Output

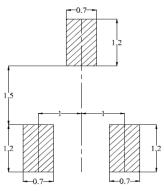

5. XXX; 1st X=Year; 2nd and 3rd XX=Week

Output Pin Assignment (Top view)



Package (SOT-23)

(Top View)


Hall Plate Chip Location (Bottom view)

NOTES:

- 1. PINOUT (See Top View at left :) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

(For reference only)Land Pattern

