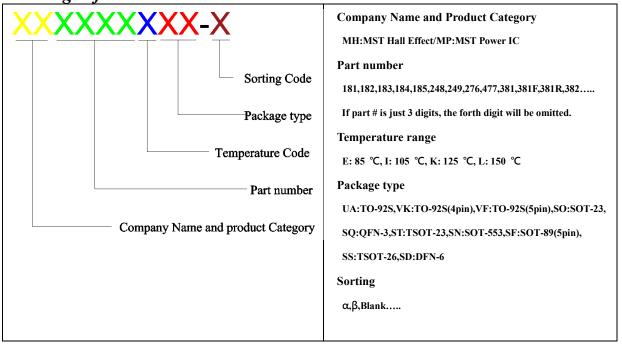


MH190, Hall-Effect sensor, designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall Voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, open collector output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. The device is identical except for magnetic switch points.

A south pole of sufficient strength will turn the output on. The North Pole is necessary to turn the output off. An on-board regulator permits operation with supply voltages of 4V to 30 V.

The package type is in a Halogen Free version was verified by third party organization.


Features and Benefits

- Optimized for BLDC motor applications
- High Peak Voltage of 65V
- 100% tested at 125 °C for K.
- Temperature compensation function
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Fan motor application
- Speed sensing
- Revolution counting
- E-Bike

Ordering Information

Part No.	Temperature Suffix	Package Type
MH190KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)
MH190KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)
MH190EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)
MH190ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

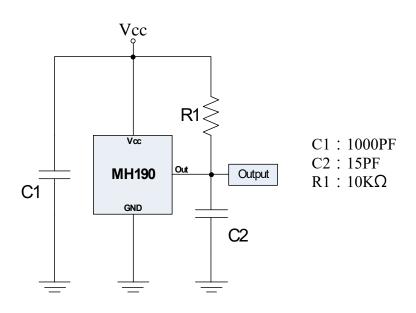
Votage Regulator
Hall Sensor

Absolute Maximum Ratings At (Ta=25 ℃)

Characteristics			Values	Unit	
Supply voltage, (V_{CC})			65	V	
Out voltage, (Vout)			65	V	
Reverse voltage, (V_{CC}) (V_{OUT})			-32	V	
Magnetic flux density			Unlimited	Gauss	
Output current, (<i>Iour</i>)			25	mA	
O ti T t P	(T.)	"E" version	-40 to +85	°C	
Operating Temperature Range,	(1a)	"K" version	-40 to +125	°C	
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C	
Maximum Junction Temp, (<i>Tj</i>)			150	°C	
Thermal Resistance	(θja) UA / SO		206 / 543	°C/W	
	(θjc) UA / SO		148 / 410	°C/W	
Package Power Dissipation, (P _D) UA / SO		606 / 230	mW		

Note: Do not apply reverse voltage to V_{cc} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

072519 Page 2 of 4 Rev. 1.04



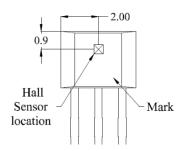
Electrical Specifications

DC Operating Parameters : $T_A = +25 \,^{\circ}\text{C}$, $V_{CC} = 12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage (Vcc)	Operating	4.0		30.0	V
Supply Current (Icc)	B <bop< td=""><td></td><td>3.0</td><td>8.0</td><td>mA</td></bop<>		3.0	8.0	mA
Output Saturation Voltage, (V _{SAT})	$I_{OUT} = 5 \text{ mA}, B > BOP$			500.0	mV
Output Leakage Current, (I_{OFF})	I_{OFF} B $<$ B _{RP} , $V_{OUT} = 24V$			10.0	uA
Output Rise Time, (T_R)	$R_L=820\Omega$, $C_L=20pF$		1.5		uS
Output Fall Time, (<i>T_F</i>)	$R_L=820\Omega; C_L=20pF$		1.5		uS
Operate Point (BOP)		10		110	Gauss
Release Point (BRP)		-110		-10	Gauss
Hysteresis (BHYS)			100		Gauss

Typical application circuit

072519 Page 3 of 4 Rev. 1.04



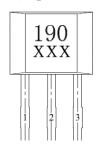
Sensor Location, Package Dimension and Marking

UA Package

45 4.10 3.90 190 3.10 0.557 2.90 XXX0.457 1.60 0.42 0.56 0.56 14.5 0.38 0.51 0.36

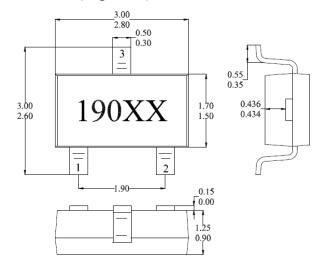
Hall Chip location

NOTES:

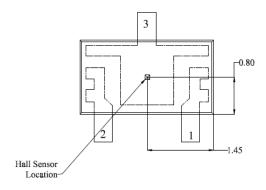

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 VDD
Pin 2 GND
Pin 3 Output

5. XXX; 1st X=Year; 2nd and 3rd XX=Week


Output Pin Assignment

(Top view)


Package (SOT-23)

(Top View)

Hall Plate Chip Location

(Bottom view)

(For reference only) Land Pattern

1.5

NOTES:

- PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table