

MH281 is an unipolar Hall effect sensor IC. It incorporates advanced chopper stabilization technology to provide accurate and stable magnetic switch points. The design, specifications and performance have been optimized for applications of solid state switches.

The output transistor will be switched on (B_{OP}) in the presence of a sufficiently strong South pole magnetic field facing the marked side of the package. Similarly, the output will be switched off (B_{RP}) in the presence of a weaker South field and remain off with "0" field.

The package type is in a Halogen Free version was verified by third party organization. Halogen Free package is available by customer's option.

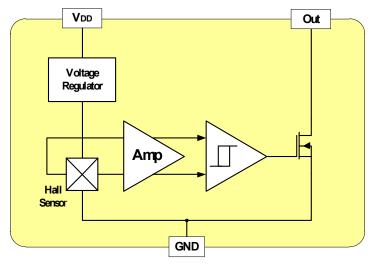
Features and Benefits

- CMOS Hall IC Technology
- Solid-State Reliability
- Chopper stabilized amplifier stage
- Unipolar, output switches with absolute value of South pole from magnet
- Operation down to 3.0V
- High Sensitivity for direct reed switch replacement applications
- 100% tested at 125°C for K Spec.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch
- Limit switch
- Current limit
- Interrupter
- Current sensing
- Magnet proximity sensor for reed switch replacement

XXXXXXXX-X	Company Name and Product Category MH:MST Hall Effect/MP:MST Power IC
Sorting Code Package type	Part number 181,182,183,184,185,248,249,276,477,381,381F,381R,382 If part # is just 3 digits, the forth digit will be omitted. Temperature range
Temperature Code	E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C
Part number	Package type UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23,
Company Name and product Category	SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin), SS:TSOT-26,SD:DFN-6
	Sorting
	α,β,Blank


Ordering Information

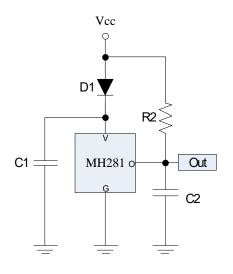
Part No.	Temperature Suffix	Package Type
MH281KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)
MH281KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH281EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)
MH281ESO	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

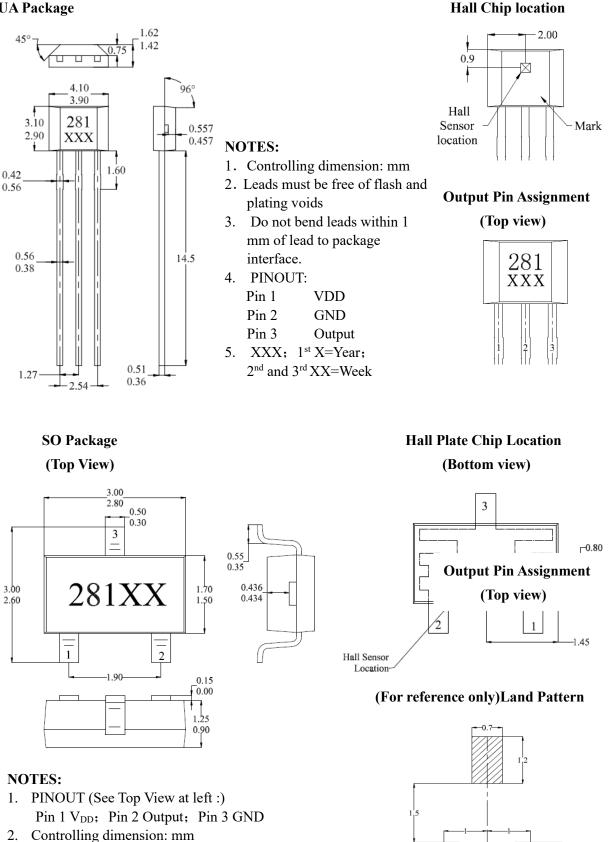
Characteristics		Values	Unit	
Supply voltage, (V _{DD})		27	V	
Output Voltage, (Vo)		27	V	
Reverse Voltage, (V _{DD}) (V _{OUT})		-0.3	V	
Magnetic flux density		Unlimited	Gauss	
Output current, (<i>I</i> _{OUT})		50	mA	
Operating Temperature Range,	"E" version	-40 to +85	°C	
(<i>Ta</i>)	"K" version	-40 to +125	°C	
Storage temperature range, (<i>Ts</i>)		-55 to +150	°C	
Maximum Junction Temp, (Tj)		150	°C	
Thermal Resistance (θ)	a) UA / SO	206 / 543	°C/W	
Thermal Resistance (θj)	c) UA / SO	148 / 410	°C/W	
Package Power Dissipation, (P_D) U	JA / SO	606 / 230	mW	


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $TA = +25^{\circ}C$, $VDD = 12V$							
Parameters	Test Conditions	Min	Тур	Max	Units		
Supply Voltage, (V _{DD})	Operating	3.0		24.0	V		
Supply Current, (<i>I</i> _{DD})	B <b<sub>OP</b<sub>		2.5	5.0	mA		
Output Saturation Voltage ,(V_{Sat})	$I_{OUT} = 20 \text{ mA},$ B>BOP			500.0	mV		
Output Leakage Current, (Ioff)	$I_{OFF} B < B_{RP}, V_{OUT} = 20V$			10.0	uA		
Output Rise Time, (TR)	RL=1k Ω , CL =20pF		0.04		uS		
Output Fall Time, (TF)	RL=1kΩ; CL =20pF		0.18		uS		
Operate Point, (BOP)			175	200	Gauss		
Release Point,(Brp)		95			Gauss		
Hysteresis, (B _{HYS)}			45		Gauss		

Typical application circuit



D1 : 1N4148 or 100Ω

C1:1000PF

Sensor Location, Package Dimension and Marking UA Package

- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

073119