

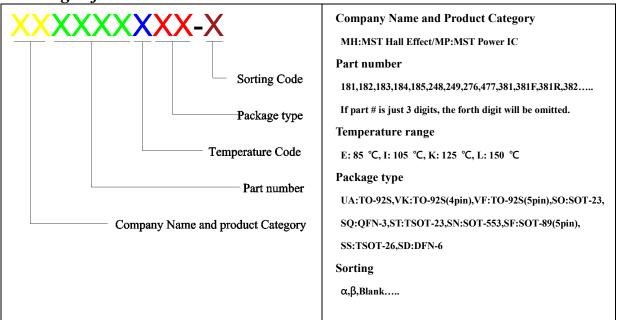
MH253 Hall-effect sensor is a temperature stable, stress-resistant switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH253 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output and push pull output driver, Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

MH253 is rated for operation between the ambient temperatures -40°C and +85°C for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

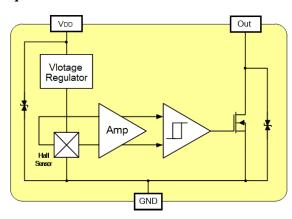
Features and Benefits


- CMOS Hall IC Technology
- Solid-State Reliability much better than reed switch
- Omni polar output switches
- High Sensitivity for reed switch replacement
- 100% tested at 125°C for K.
- Small Size
- ESD HBM ±4KV Min
- COST competitive
- RoHS compliant 2011/65/EU and Halogen Free.

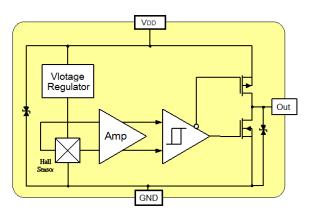
Applications

- Solid state switch
- Lid close sensor for power supply devices
- Magnet proximity sensor for reed switch replacement in high duty cycle applications.
- Safety Key on sporting equipment
- Revolution counter
- Speed sensor
- Position Sensor
- Rotation Sensor
- Safety Key

Ordering Information



Part No.	Temperature Suffix	Package Type	
MH253KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)	
MH253EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH253ESO	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	SO (SOT-23)	
MH253CESO	$E \left(-40^{\circ}C \text{ to} + 85^{\circ}C\right)$	SO (SOT-23)	


Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Open Drain

Push Pull

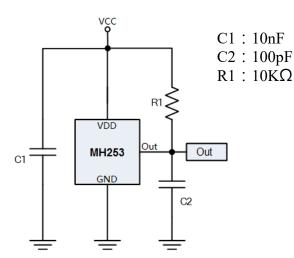
Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings At (Ta=25°C)

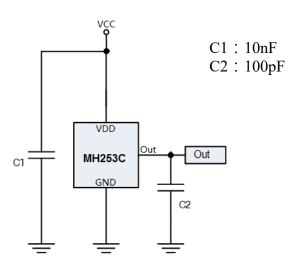
Characteristics			Values	Unit	
Supply voltage,(VDD)			7	V	
Output Voltage,(Vout)		6	V		
Reverse voltage, (VDD) (VOUT)			-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current,(IoUT)			25	mA	
On anoting Tanananatura Ban	~~ (T _v)	"E" version	-40 to +85	°C	
Operating Temperature Range	ge, (<i>1a</i>)	"K" version	-40 to +125	°C	
Storage temperature range, (<i>Ts</i>)			-55 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)			150	°C	
Thermal Resistance	$(\theta JA) \text{ UA / SO}$		206 / 543	°C/W	
	(θJC) UA / SO		148 / 410	°C/W	
Package Power Dissipation, (PD) UA / SO			606 / 230	mW	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

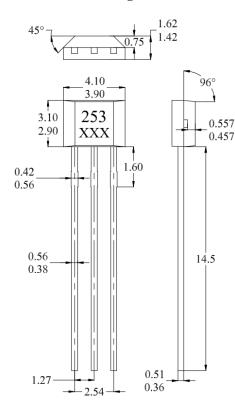
Electrical Specifications


DC Operating Parameters $T_A = +25$ °C, $V_{DD} = 5.0V$

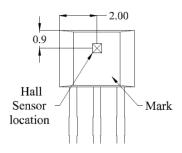
Parameters		Test Conditions	Min	Тур	Max	Units	
Supply Voltage,(VDD)		Operating	2.5		6	V	
Supply Current,(<i>I</i> _{DD})		Average		2.6	6.0	mA	
Output Low Voltage,(VDSON)		Iout=10mA			400	mV	
Output Leakage Current,(Ioff)		IOFF B <brp, vout="5V</td"><td></td><td></td><td>10</td><td>uA</td></brp,>			10	uA	
Output Rise Time, (T_R)		$RL=10k\Omega$, $CL=20pF$			0.45	uS	
Output Fall Time,(TF)		RL=10kΩ; CL =20pF			0.45	uS	
Electro-Static Discharge		нвм	4			KV	
Operate Point,	(Bops)	S pole to branded side, B > BOP, Vout On		30	60	C	
	(B_{OPN})	N pole to branded side, B > BOP, Vout On	-60	-30		Gauss	
Release Point	(B_{RPS})	S pole to branded side, B < BRP, Vout Off	5	20		Gauss	
	(B_{RPN})	N pole to branded side, B < BRP, Vout Off		-20	-5		
Hysteresis,(BHYS)		BOPx - BRPx		10		Gauss	



Typical Application circuit



Push Pull

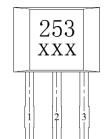


Sensor Location, Package Dimension and Marking

UA Package

Hall Chip location

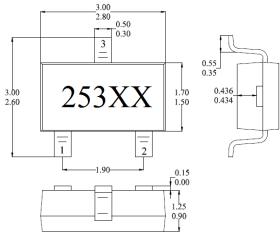
NOTES:

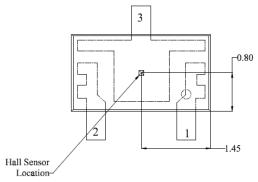

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 VDD Pin 2 GND Pin 3 Output

5. XXX; 1st X=Year; 2nd and 3rd XX=Week

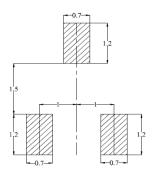
Output Pin Assignment


(Top view)


SO Package

(Top View)

Hall Plate Chip Location


(Bottom view)

(For reference only)Land Pattern

NOTES:

- PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

