

Low Sensitive Pull High Res Omnipolar Hall Switch

MH278 Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

MH278 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and pull up resistor integrated on chip. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

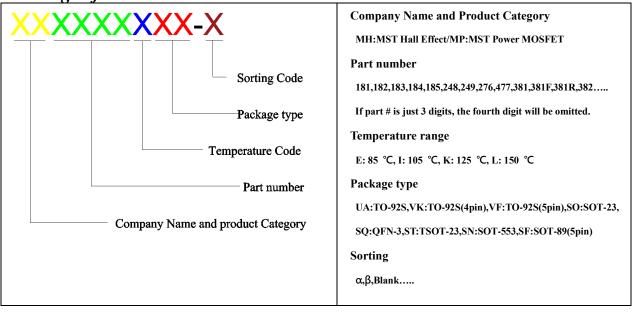
This device requires the presence of omni-polar magnetic fields for operation.

MH278 is rated for operation between the ambient temperatures -40°C and +85°C for the E temperature range. and -40°C to +125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package types SO is a SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

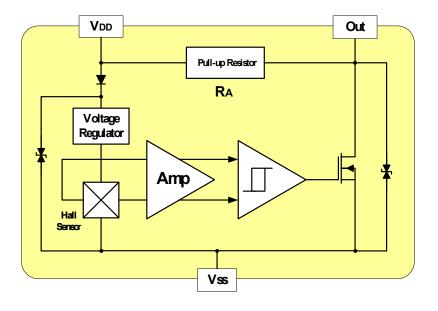
Features and Benefits

- DMOS Hall IC Technology.
- Operation range from 2.5V to 26V.
- Omni polar, output switches with absolute value of North or South pole from magnet.
- High Sensitivity for reed switch replacement applications.
- Low sensitivity drift in crossing of Temp range.
- High ESD Protection, HBM $> \pm 4$ KV(min)
- Output Current limit in 100mA.
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- Solid state switch.
- Limit switch.
- Current limit.
- Interrupter.
- Current sensing.
- Magnet proximity sensor for reed switch replacement.

MH 278 Specifications


Ordering Information

Part No.	Temperature Suffix	Package Type
MH278KUA	K (-40°C to +125°C)	UA (TO-92S)
MH278EUA	E (-40°C to +85°C)	UA (TO-92S)
MH278KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH278ESO	E (-40°C to $+$ 85°C)	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

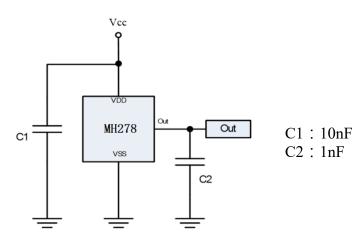
Functional Diagram

MH 278 Specifications

Low Sensitive Pull High Res Omnipolar Hall Switch

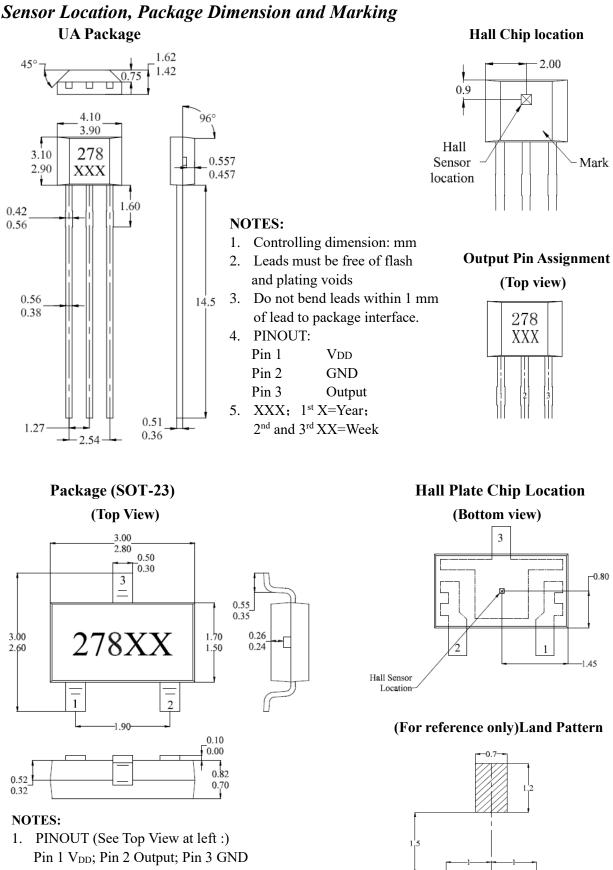
Absolute Maximum Ratings At (Ta=25°C)

insolute maximum Ratings III (10 25 C)								
Characteristics			Values	Unit				
Supply voltage,(<i>VDD</i>)			28	V				
Output Voltage,(Vout)			28	V				
Reverse Voltage, (VDD / Vout)			-0.3/-0.3	V				
Output current, (ISINK)			25	mA				
Operating Temperature Range, (T _A)		"E" Class	$-40 \sim +85$	°C				
		"K" Class	-40 ~ +125	°C				
Storage temperature Range, (<i>Ts</i>)			-55 ~ +150	°C				
Maximum Junction Temp,(<i>T</i> _J)			150	°C				
Thermal Resistance	(θ_{JA}) UA/ SO		206 / 543	°C/w				
	(θ_{JC}) UA/ SO		148 / 410	°C/w				
Package Power Dissipation, (PD)		606 / 230	mW					


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A = +25$ °C, $V_{DD} = 12V$


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V _{DD})	Operating	2.5		26.0	V
Supply Current, (<i>I</i> _{DD})	B <b<sub>OP</b<sub>		2.5	5.0	mA
Output Saturation Voltage, (V _{DSON})	I _{OUT} =20mA, B>B _{OP}		300	500.0	mV
Output Leakage Current, (IOFF)	$I_{OFF} B \leq B_{RP}, V_{OUT} = 20V$			10.0	uA
Output Limited Current, (I _{CO})	B>B _{OP}		100		mA
Power-On Time, (T_{PO})	Power-On			100	uS
Output Switch Time, (T_{SW})	Operating			100	uS
Output Switch Frequency, (F_{SW})	Operating	5			kHz
Output Rise Time, (T_R)	$C_L = 20 pF$		0.1	0.45	uS
Output Fall Time, (T_F)	$C_L = 20 pF$		6.0	10	uS
Electro-Static Discharge	НВМ	4			KV
Pull-up Resistor, (<i>RA</i>)			10		KΩ
Operate Point, $B_{OPS}(B_{OPN})$	B>BOPS(B <bopn), on<="" td="" vout=""><td>140(-250)</td><td></td><td>250(-140)</td><td>Gauss</td></bopn),>	140(-250)		250(-140)	Gauss
Release Point, $B_{RPS}(B_{RPN})$	B <b<sub>RPS(B>B_{RPN}), V_{OUT} Off</b<sub>	95(-205)		205(-95)	Gauss
Hysteresis, (B_{HYS})	B _{OPX} - B _{RPX}		45		Gauss

Typical application circuit

Low Sensitive Pull High Res Omnipolar Hall Switch

2. Controlling dimension: mm

101220

- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table