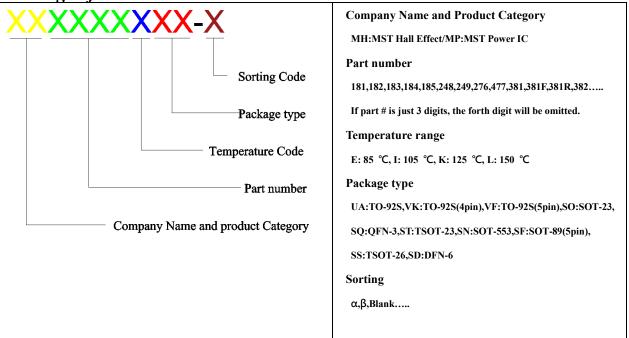


MH282 is an unipolar Hall effect sensor IC. It incorporates advanced chopper stabilization technology to provide accurate and stable magnetic switch points. The design, specifications and performance have been optimized for applications of solid state switches.

The output transistor will be switched on (BOP) in the presence of a sufficiently strong South pole magnetic field facing the marked side of the package. Similarly, the output will be switched off (BRP) in the presence of a weaker South field and remain off with "0" field.

The package type is in a Halogen Free version was verified by third party organization. Halogen Free package is available by customer's option.

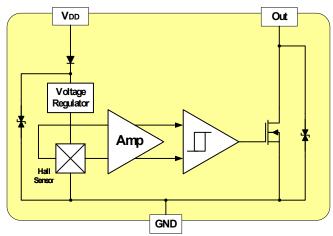
#### Features and Benefits


- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Solid-State Reliability.
- Chopper stabilized amplifier stage.
- Unipolar, output switches with absolute value of South pole from magnet.
- Operation down to 2.5 V.
- High Sensitivity for direct reed switch replacement applications.
- 100% tested at 125°C for K Spec.
- Custom sensitivity / Temperature selection are available.
- Good ESD Protection.
- RoHS compliant 2011/65/EU and Halogen Free

#### **Applications**

- Solid state switch
- Limit switch
- Current limit
- Interrupter
- Current sensing
- Magnet proximity sensor for reed switch replacement




**Ordering Information** 



| Part No. | Temperature Suffix                            | Package Type |
|----------|-----------------------------------------------|--------------|
| MH282KUA | $K (-40^{\circ}C \text{ to } + 125^{\circ}C)$ | UA (TO-92S)  |
| MH282KSO | $K (-40^{\circ}C \text{ to } + 125^{\circ}C)$ | SO (SOT-23)  |
| MH282EUA | $E (-40^{\circ}C \text{ to} + 85^{\circ}C)$   | UA (TO-92S)  |
| MH282ESO | E $(-40$ °C to $+85$ °C)                      | SO (SOT-23)  |

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

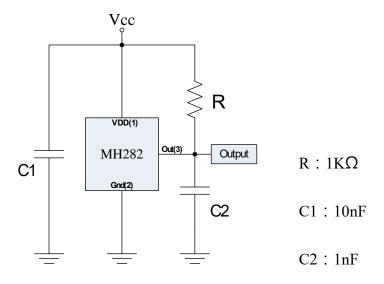
### Functional Diagram





Absolute Maximum Ratings At (Ta=25°C)

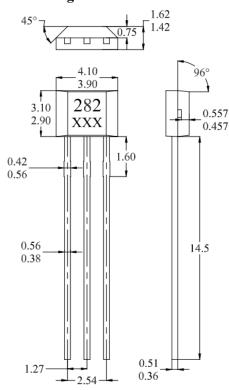
| Characteristics                            |                         |             | Values      | Unit  |  |
|--------------------------------------------|-------------------------|-------------|-------------|-------|--|
| Supply voltage, $(V_{DD})$                 |                         |             | 28          | V     |  |
| Output Voltage,(Vo)                        |                         |             | 28          | V     |  |
| Reverse Voltage, $(V_{DD})$                |                         |             | -28         | V     |  |
| Magnetic flux density                      |                         |             | Unlimited   | Gauss |  |
| Output current , ( <i>Iour</i> )           |                         | 50          | mA          |       |  |
| On anating Tanananatana Banas              | (T <sub>a</sub> )       | "E" version | -40 to +85  | °C    |  |
| Operating Temperature Range                | e, (1a)                 | "K" version | -40 to +125 | °C    |  |
| Storage temperature range, ( <i>Ts</i> )   |                         |             | -55 to +150 | °C    |  |
| Maximum Junction Temp,( <i>Tj</i> )        |                         | 150         | °C          |       |  |
| Thermal Resistance                         | $(\theta_{ja})$         | a) UA / SO  | 206 / 543   | °C/W  |  |
|                                            | $(\theta_{jc})$ UA / SO |             | 148 / 410   | °C/W  |  |
| Package Power Dissipation, $(P_D)$ UA / SO |                         | 606 / 230   | mW          |       |  |


 $\textit{Note}: \textit{Do not apply reverse voltage to } V_{DD} \textit{ and } V_{OUT} \textit{ Pin, It may be caused for Miss function or damaged device}.$ 

#### **Electrical Specifications**

DC Operating Parameters : TA=+25°C, VDD=12V

| Parameters                              | <b>Test Conditions</b>                            | Min | Тур  | Max   | Units |
|-----------------------------------------|---------------------------------------------------|-----|------|-------|-------|
| Supply Voltage, $(V_{DD})$              | Operating                                         | 2.5 |      | 24.0  | V     |
| Supply Current, $(I_{DD})$              | B <b<sub>OP</b<sub>                               |     | 2.5  | 5.0   | mA    |
| Output Saturation Voltage $(V_{Sat})$   | $I_{OUT} = 20 \text{ mA}, B > B_{OP}$             |     |      | 400.0 | mV    |
| Output Leakage Current, ( <i>Ioff</i> ) | $I_{OFF}$ B $<$ B <sub>RP</sub> , $V_{OUT} = 20V$ |     |      | 10.0  | uA    |
| Output Rise Time, $(T_R)$               | $R_L=1k\Omega$ , $CL=20pF$                        |     | 0.04 | 0.45  | uS    |
| Output Fall Time, $(T_F)$               | $R_L=820\Omega$ ; $CL=20pF$                       |     | 0.18 | 0.45  | uS    |
| Electro-Static Discharge                | HBM                                               | 4   |      |       | KV    |
| Operate Point, $(B_{OP})$               |                                                   | 70  |      | 110   | Gauss |
| Release Point, $(B_{RP})$               |                                                   | 50  |      | 90    | Gauss |
| Hysteresis, $(B_{HYS})$                 |                                                   |     | 20   |       | Gauss |


### Typical application circuit

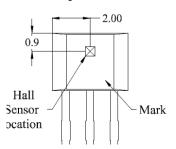




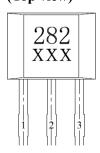
### Sensor Location, Package Dimension and Marking

#### **UA Package**



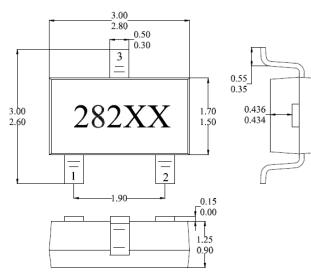

#### **NOTES:**

- 1.Controlling dimension: mm
- 2.Leads must be free of flash and plating voids
- 3.Do not bend leads within 1 mm of lead to package interface.
- 4.PINOUT:


| Pin 1 | VCC   |
|-------|-------|
| Pin 2 | GND   |
| Pin 3 | Outpu |
|       |       |

5. XXX; 1<sup>st</sup> X=Year; 2<sup>nd</sup> and 3<sup>rd</sup> XX=Week

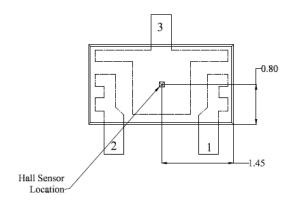
#### **Hall Chip location**



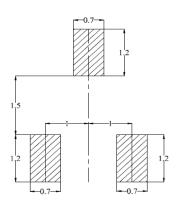

# Output Pin Assignment (Top view)



#### **SO Package**


#### (Top View)




#### **NOTES:**

- 1. PINOUT (See Top View at left :) Pin 1 V<sub>CC</sub>; Pin 2 Output; Pin 3 GND.
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

## Hall Plate Chip Location (Bottom view)



#### (For reference only)Land Pattern

