

### High Speed High Accuracy Linear Hall Sensor

The MH485 is a monolithic programmable Hall sensor IC featuring the planar Hall technology, which is sensitive to the flux density applied orthogonally to the IC surface. The sensor provides an output signal proportional to the applied magnetic flux density and is preferably suited for current measurement.

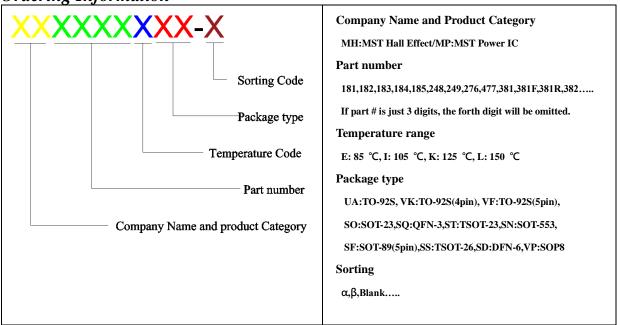
The transfer characteristic of the MH485 is factory trimmed over temperature, and is programmable (offset, gain) during end-of-line customer calibration. The linear analog output is designed for applications where a very fast response is required, such as inverter applications.

In a typical application, the sensor is used in combination with a soft ferromagnetic core. This core is recommended to be laminated for high bandwidth applications. The Hall IC is placed in a small air gap and the current conductor is passed through the inner part of the ferromagnetic core.

The core concentrates and amplifies the magnetic flux on the Hall sensor IC, which generates an output voltage proportional to the current flowing in the conductor.

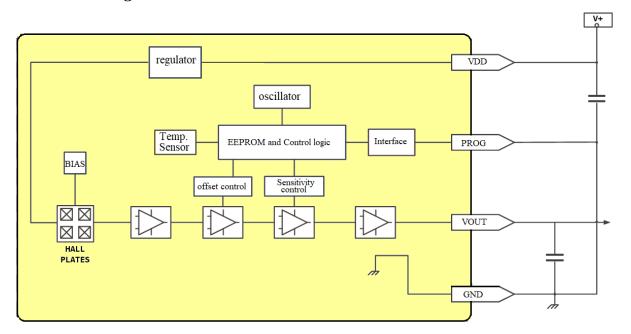
### Features and Benefits

- End-of-line programmable sensor
- User-selectable internal or external reference voltage
- User-selectable radiometry of QVO
- Sensitivity is independent from V<sub>DD</sub>
- Measurement range from  $\pm 0.9$  to  $\pm 25$  mV/G
- Wideband sensing: DC to 200KHz
- Very short response time (<2µs)
- Sensitivity can be custom made
- RoHS compliant
- MSL-1


### **Applications**

- High Voltage Traction Motor Inverter
- 48V Boost Recuperation Inverter
- DC/DC Converter
- BLDC motor current monitoring
- Smart Fuse Overcurrent Detection




High Speed High Accuracy Linear Hall Sensor

Ordering Information



| Part No. | Temperature Suffix                           | Package Type     |
|----------|----------------------------------------------|------------------|
| MH485KVP | $K (-40^{\circ}C \text{ to} + 125^{\circ}C)$ | VP (SOP8 8PIN)   |
| MH485KVL | $K (-40^{\circ}C \text{ to} + 125^{\circ}C)$ | VL (TO-92S 3PIN) |

# Functional Diagram





### High Speed High Accuracy Linear Hall Sensor

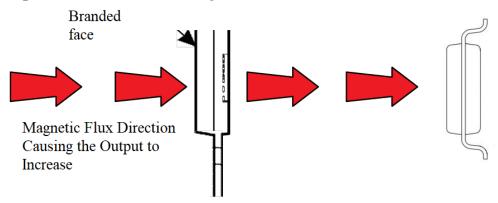
**Absolute Maximum Ratings** At (Ta=25°C)

| Parameter                             | Symbol             | Value       | Unit  |
|---------------------------------------|--------------------|-------------|-------|
| Positive Supply Voltage (overvoltage) | $V_{ m DD}$        | 6.5         | V     |
| Reverse Voltage                       | VSrev              | -0.3        | V     |
| Positive Output Voltage               | Vout               | 5.5         | V     |
| Output Sink Current                   | Isink              | -40         | mA    |
| Output Source Current                 | Isource            | 60          | mA    |
| Reverse Output Voltage                | VOrev              | -0.3        | V     |
| Reverse Output Current                | IOrev              | -50         | mA    |
| Operating Ambient Temperature Range   | $T_{A}$            | -40 to +125 | °C    |
| Storage Temperature Range             | $T_{S}$            | -40 to +125 | °C    |
| ESD – Human Body Model                | ESD <sub>HBM</sub> | 4           | KV    |
| Maximum Number of EEPROM Write Cycles | EEPROMW(max)       | 1000        | cycle |

**Note**: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum - rated conditions for extended periods of time may affect device reliability.

# General Electrical Specifications

Operating Parameters  $T_A = -40$  to 125°C,  $V_{DD} = 5V$  or  $3.3V \pm 10\%$ , unless otherwise specified.


| Parameter              | Symbol            | <b>Test Conditions</b>              | Min.  | Typ.  | Max.    | Units |
|------------------------|-------------------|-------------------------------------|-------|-------|---------|-------|
| Nominal Supply Voltage | $V_{\mathrm{DD}}$ |                                     | 3/4.5 | 3.3/5 | 3.6/5.5 | V     |
| Supply Current         | Idd               | No OUT load                         |       | 13    | 18      | mA    |
| Output Impedance       | Rout              | Normal Operation                    |       | 8     |         | Ω     |
| Output Capacitive Load | $C_{L}$           |                                     | 1     |       | 100     | nF    |
| Output Resistive Load  | $R_{\rm L}$       |                                     | 4.7   |       |         | ΚΩ    |
| Linear Output Range    | VOLIN             | pull-down $\geq 10 \text{ k}\Omega$ | 10    |       | 90      | %Vdd  |

# Magnetic specification

Operating Parameters  $T_A = -40$  to 125°C,  $V_{DD} = 5V$  or  $3.3V \pm 10\%$ , unless otherwise specified.

| Parameter                           | Symbol | <b>Test Conditions</b>                                                                                                       | Min  | Тур   | Max   | Units |
|-------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|
| Operational Magnetic Field<br>Range | Вор    |                                                                                                                              | ±100 | ±1000 | ±2300 | G     |
| Programmable Sensitivity            | S      |                                                                                                                              | 0.9  | 2     | 25    | mV/G  |
| Linearity Error (Magnetic)          | NL     | $\begin{aligned} &V_{OUT} \text{ in } [10\%V_{DD},\\ &90\%V_{DD}],T_A=25^\circ\text{C},RL\\ &\geq 10\;k\Omega \end{aligned}$ |      |       | ±0.25 | %FS   |

# Output Behavior versus Magnetic Pole





### High Speed High Accuracy Linear Hall Sensor

# Analog output specification

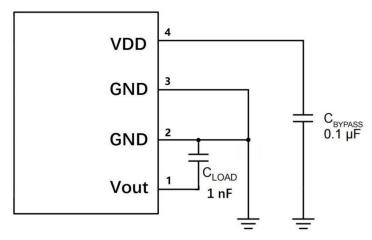
### Accuracy specifications

Operating Parameters TA = -40 to  $125^{\circ}C$ , VDD = 5V or  $3.3V \pm 10\%$ , unless otherwise specified.

| Parameter                                              | Symbol                 | <b>Test Conditions</b>                                                | Min           | Тур    | Max           | Units             |
|--------------------------------------------------------|------------------------|-----------------------------------------------------------------------|---------------|--------|---------------|-------------------|
| RMS Output<br>Noise(high-gain)                         | Nrms-hg                | Values for S=12.5mV/G,<br>1KHz-100KHz                                 |               | 7      |               | mV <sub>RMS</sub> |
| V <sub>OQ</sub> Ratiometry                             | $\Delta^{ m R} { m V}$ | $V_{DD} = 5V\pm5\%, V_{OQ} = 50\%V_{DD}$                              |               | ±0.24  | ±0.4          | %V <sub>OQ</sub>  |
| Temperature coefficient variation of Sensitivity δTCvo |                        | Over full range of BM and TA, calibrated IC, without TC <sub>OF</sub> | -200          |        | 200           | ppm/°C            |
| •                                                      |                        | Ta = 25°C, after trimming                                             | 0.496         | 0.50   | 0.504         | V                 |
| Sensor output Voltage                                  | $V_{\mathrm{out}}$     | $V_{DD} = 5V$                                                         | 2.496         | 2.50   | 2.504         | V                 |
|                                                        |                        | $V_{DD} = 5V \text{ or } 3.3V$                                        | 0.496         | 0.5    | 0.504         | V                 |
|                                                        |                        | $V_{DD} = 5V \text{ or } 3.3V$                                        | VDD/2<br>-4m  | VDD/2  | VDD/2<br>+4m  | V                 |
|                                                        |                        | $V_{DD} = 5V$                                                         | VDD/10<br>-4m | VDD/10 | VDD/10<br>+4m | V                 |
|                                                        |                        | $V_{DD} = 3.3V$                                                       | 1.646         | 1.65   | 1.654         | V                 |
| Offset Temperature characteristic                      | TCVOF                  | $B_M = 0 \mu T$ , $S=12.5 \text{mV/G}$ , $V_{OUT} - V_{DD}/2$         | -0.120        |        | 0.120         | mV/°C             |
| Average Fine Sensitivity Programming Step Size         | Step <sub>SENS</sub>   | $S=12.5 \text{mV/G}, T_A = 25 ^{\circ}\text{C}$                       |               | 1.5    |               | μV/G              |

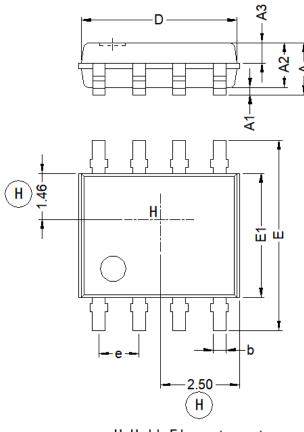
The accuracy specifications are defined for the factory calibrated sensitivity. The achievable accuracy is dependent on the user's end-of-line calibration.

### Timing specifications

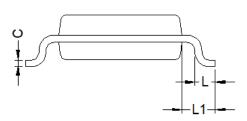

Operating Parameters  $T_A = -40$  to  $125^{\circ}C$ , Vdd = 5V or  $3.3V \pm 10\%$ , unless otherwise specified.

| Parameter           | Symbol | <b>Test Conditions</b>                                                                                                  | Min | Тур | Max | Units |
|---------------------|--------|-------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| Response Time       | trise  | T <sub>A</sub> = 25 °C, C <sub>L</sub> =1nf, Magnetic field step of 400G, Sens=2mV/G, Measured 90% input to 90% output. |     | 2   |     | μs    |
| Frequency bandwidth | BW     | -3 dB, TA = 25 °C                                                                                                       | 120 | 170 | 200 | KHz   |

### Programmable Items


| Parameter | Bits                                  | Factory<br>Setting | Comment                                                   |  |
|-----------|---------------------------------------|--------------------|-----------------------------------------------------------|--|
| VOQ[4:0]  | 5                                     | trimmed            | Quiescent output level (0 Gauss) adjustment               |  |
| RG[4:0]   | 5                                     | trimmed            | Rough gain adjustment                                     |  |
| FG[7:0]   | 8                                     | trimmed            | Fine gain adjustment                                      |  |
| POL       | 1                                     | 0                  | 0: default polarity as described in section 10 (figure 4) |  |
| POL       | $\begin{vmatrix} 1 & 0 \end{vmatrix}$ |                    | 1: opposite polarity                                      |  |
| Vout[2:0] | 3                                     | 4                  | 0: 0.5V 1:VDD/10 2:1.65V 3: 2.5V 4: VDD/2                 |  |

# Typical application circuit



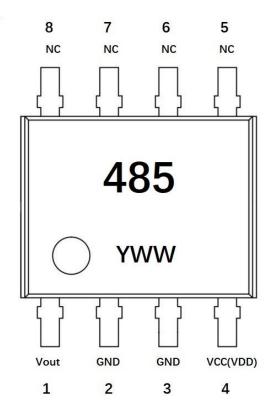

**Typical Application** 

# Sensor Location, package dimension and marking VP package Dimension



H:Hall Element center




| SYMBOL     | MILL        | IMETE | R     |  |
|------------|-------------|-------|-------|--|
|            | MIN         | NOM   | MAX   |  |
| Α          |             |       | 1. 65 |  |
| <b>A</b> 1 | 0. 10       |       | 0. 25 |  |
| A2         | 1. 40       | 1.42  | 1. 50 |  |
| A3         | 0. 60       | 0. 65 | 0. 70 |  |
| b          | 0. 33       |       | 0. 47 |  |
| С          | 0. 20       |       | 0. 24 |  |
| D          | 4. 80       | 4. 90 | 5. 00 |  |
| E          | 5. 90       | 6. 00 | 6. 20 |  |
| E1         | 3. 85       | 3. 90 | 4. 00 |  |
| е          | 1. 27 (BSC) |       |       |  |
| L          | 0. 50       | 0. 60 | 0. 70 |  |
| L1         | 1. 05 (BSC) |       |       |  |

<sup>\*</sup>Strongly recommend: arrange  $C_{BYPASS}$ ,  $C_{LOAD}$ ,  $C_F$  as close as possible to pin VDD, Vout.



### High Speed High Accuracy Linear Hall Sensor

### **TOP MARK**

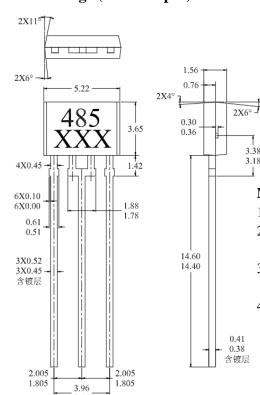


### **NOTES:**

- Controlling dimension: mm
- Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

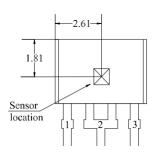
Pin1 Vout (Sensor Output)

Pin2 GND (Ground)

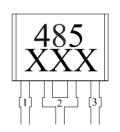

Pin3 GND (Ground)

Pin4 V<sub>DD</sub> (Supply Voltage)

5. Y=Last digit of year of manufacture


WW=Week of manufacture

### VL Package (To-92S-3pin)



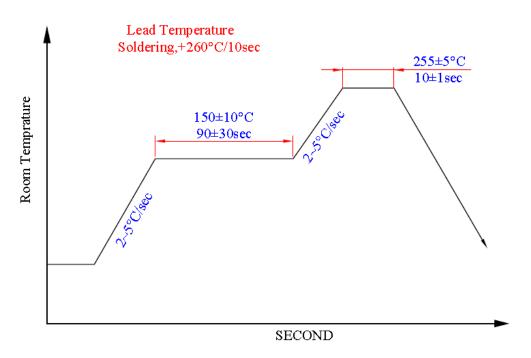

3.66

# **Hall Chip location**



## **Output Pin Assignment**




- 1. Controlling dimension: mm
- 2.Leads must be free of flash and plating voids
- 3.Do not bend leads within 1 mm of lead to package interface.
- 4.PINOUT:

**NOTES:** 

3.38

Pin 1 **VOUT** Pin 2 **GND** Pin 3 **VCC** 

# IR reflow curve



**VP/VL Soldering Condition** 

# Packing specification:

| Package     | Packing Form  |
|-------------|---------------|
| SOP8(8pin)  | 1,000pcs/tube |
| TO-92S-3PIN | 1000pcs/Bag   |

### *Inter box label :* Size:6cm\* 9cm





High Speed High Accuracy Linear Hall Sensor

# Carton label: Size:6cm\* 9cm



# Combine:

When combine lot, one reel could have two D/C and no more than two DC. One carton could have two devices, no more than two;