

MH183 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior hightemperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH183 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH183 is rated for operation between the ambient temperatures -40° C and 85° C for the E temperature range, and -40° C to 125° C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is a SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

Ordering Information XXX-X **Company Name and Product Category** MH:MST Hall Effect/MP:MST Power IC Part number Sorting Code 181,182,183,184,185,248,249,276,477,381,381F,381R,382..... If part # is just 3 digits, the forth digit will be omitted. Package type **Temperature range** Temperature Code E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C Package type Part number UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23, Company Name and product Category SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin), SS:TSOT-26,SD:DFN-6 Sorting α,β,Blank.....

Part No.	Temperature Suffix	Package Type
MH183KUA	K (-40° C to + 125°C)	UA (TO-92S)
MH183KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH183EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)
MH183ESO	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25 C)

Characteristics			Values	Unit
Supply voltage, (VDD)			28	V
Output Voltage,(Vout)			28	V
Reverse voltage, (VDD)			-28/-0.3	V
Output current, (<i>Isink</i>)			50	mA
	(T_{τ})	"E" version	-40 to +85	°C
Operating Temperature Range,	, (1a)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)			150	°C
Thomas Desiston as	$(\theta$	ja) UA/SO	206/543	°C/W
Thermal Resistance	(θ_{jc}) UA/SO		148/410	°C/W
Package Power Dissipation, (<i>P</i> _D) UA/SO			606/230	mW

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		26.0	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	$I_{OUT} = 20 \text{ mA}, B > B_{OP}$			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA
Power-On Time, (T_{PO})	Power-On		0.05	0.10	uS
Output Response Time, (T_{RES})	Operating		0.30	0.65	mS
Output Switch Frequency, (F_{SW})		3			kHz
Output Rise Time, (<i>T</i> _R)	RL=1K Ω , CL=20pF		0.12	0.35	uS
Output Fall Time, (<i>T_F</i>)	RL=1K Ω ; CL =20pF		0.05	0.15	uS
Electro-Static Discharge	HBM	4			KV
Operate Point (B _{OP})	UA(SO)	100(-200)		200(-100)	Gauss
Release Point (B _{RP})	UA(SO)	-200 (100)		-100 (200)	Gauss
Hysteresis (Bhys)			300		Gauss

Typical application circuit

Sensor Location, Package Dimension and Marking **UA Package**

Hall Chip location

Mark

-0.80

.45

NOTES:

- 1. PINOUT (See Top View at left :) Pin 1 :V_{DD;} Pin 2: Output ; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table