

MH173 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH173 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH173 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The package style available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package.

Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69kHz
- Pull-up resistor output
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- Reverse bias protection on power supply pin.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

Ordering Information

Part No.	Temperature Suffix	Package Type
MH173KSO	$K (-40^{\circ}C \text{ to } + 125^{\circ}C)$	SO (SOT-23)
MH173ESO	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)

Functional Diagram

Absolute Maximum Ratings At (Ta=25 °C)

Characteristic	Values	Unit	
Supply voltage, (VDD)	28	V	
Output Voltage,(Vout)	28	V	
Reverse Voltage, (VDD / Vout)	-0.3 V		
Output current, (ISINK)	25	mA	
On anoting Towns and town Bangs (7	"E" Class	-40 ~ +85	°C
Operating Temperature Range, (T	A) "K" Class	-40 ~ +125	°C
Storage temperature range, (<i>Ts</i>)	-65 to +150	°C	
Maximum Junction Temp,(<i>TJ</i>)	150	°C	
Thermal Resistance	(θ_{JA}) SO	543	°C/W
Thermal Resistance	(θ_{JC}) SO	410	°C/W
Package Power Dissipation, (P_D) SO		230	mW

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		26	V
Supply Current,(<i>I</i> _{DD})	B <b<sub>OP</b<sub>		3.0	5.0	mA
Output Saturation Voltage, (Vsat)	B>Bop			400.0	mV
Output Leakage Current, (Iof)	I_{OFF} B <b<sub>RP, $V_{OUT} = 12V$</b<sub>			10.0	uA
Output Rise Time, (TR)	$RL=1.1K\Omega$, $CL=20pF$			0.45	uS
Output Fall Time, (<i>T_F</i>)	$RL=820\Omega$; $CL=20pF$			0.45	uS
Electro-Static Discharge	НВМ	4			KV
Pull-up Resistor, (Ra)			10		ΚΩ
Operate Point, (BOP)	SO	5		60	GS
Release Point, (BRP)	SO	-60		-5	GS
Hysteresis,(BHYS)	BOP - BRP		60		GS

Typical application circuit

042623 Page 3 of 4 Rev. 1.05

Sensor Location, Package Dimension and Marking

SO Package

NOTES:

1. PINOUT (See Top View at left:)

 $Pin \ 1 \qquad V_{DD}$

Pin 2 Output

Pin 3 GND

- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

