

MH3610KVS is a one-chip solution designed in mixed signal CMOS technology for driving single-coil brushless DC motors like PWM cooling fans. The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system, a power output H-bridge all controlled by a sophisticated digital state machine, all in a single package. The included voltage regulator operates from 3.5V to 16V, hence covering a wide range of applications. With the built-in reverse voltage protection, no diode on the supply line is required. In case of critical low voltage operation, the Brown-Out Detection will automatically stop the device operation until normal supply voltage in the operational range is applied.

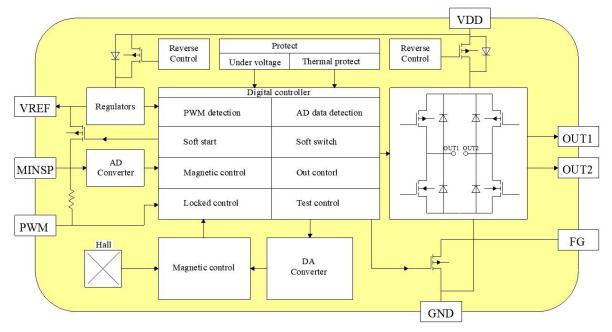
Features and Benefits

- Wide operating voltage range:3.5V~16V
- Allowing speed regulation through PWM or DC voltage control
- PWM input duty cycle with wide input frequency range from 100Hz to 100KHz
- Soft start suppresses peak currents during start up
- Minimal speed setting
- Built-in PWM input resister
- Soft switching : Optimum low noise performance at different rotation speed with no external components
- Integrated protection :Reverse Voltage ·Locked Rotor ·Brown-Out ·Thermal Shutdown and High ESD Rating
- Built-in FG output

Applications

- Single Phase BLDC Motors
- Single Phase BLDC Fan
- CPU/GPU Cooling Fan

Ordering Information


XXXXXXXXX-X	Company Name and Product Category MH:MST Hall Effect/MP:MST Power MOSFET		
Package type Temperature Code	Part number 181,182,183,184,185,248,249,276,477,381,381F,381R,382 If part # is just 3 digits, the forth digit will be omitted. Temperature range E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C		
Part number	Package type		
Company Name and product Category	UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),VS/VP:SOP8 SO:SOT-23,SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SD:DFN2*2-6L SR:SOT-26L,SM:DFN1.6*1.6-6L,SY:DFN3*3*1-10L		
	Sorting α,β,Blank		

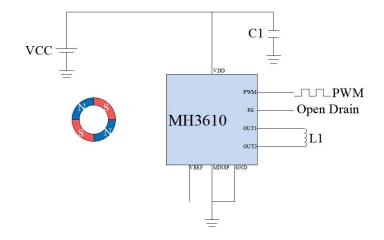
Part No.	Temperature Suffix	Package Type
MH3610KVS	K (-40°C to +125°C)	VS (SOP8 Straight Lead)
MH3610KVS-DB	K (-40°C to +125°C)	VS (SOP8 Straight Lead)

K spec is using in industrial and automotive application. Special Hot Testing is utilized.

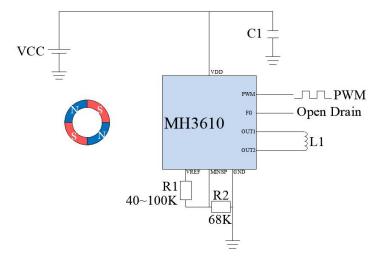
Functional Diagram

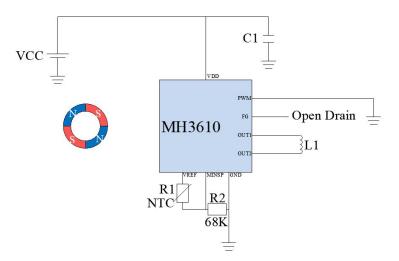
Absolute Maximum Ratings At (Ta=25 °C)

Parameter	Symbol	Value	Units	
Supply Voltage	V _{DD}	+18	V	
Supply Current	I _{DD}	+20	mA	
Reverse Supply Voltage	V _{DDREV}	-18	V	
Reverse Supply Current	I _{DDREV}	-20	mA	
FG Output Voltage	V _{FG}	+18	V	
FG Output Current	I _{FG}	+30	mA	
Reverse FG Output Current	I _{FG}	-50	mA	
PWM Input Voltage	V _{PWM}	+7	V	
Reverse PWM Input Voltage	V _{PWM}	-0.3	V	
MINSP Input Voltage	V _{MINSP}	+3.6	V	
Reverse MINSP Input Voltage	V _{MINSP}	-0.3	V	
Reverse Current on MINSP or PWM	I _{MINSP} , I _{PWM}	-10	mA	
Average Output Current	I _{OUT}	+550	mA	
Peak Output Current	I _{OUT}	+1000	mA	
Operating Temperature Range	T _A	-40to+150	°C	
Storage Temperature Range	Ts	-55to+165	°C	
Maximum Junction Temperature	TJ	+165	°C	
ESD Sensitivity - HBM	-	6000	V	
Magnetic Flux Density	В	Unlimited	mT	

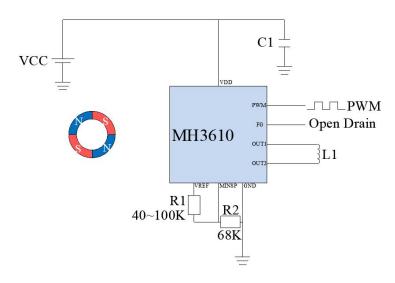


Electrical Specifications (*Ta=25 °C,VDD=12V,unless otherwise specified*)


Parameters	Symbol	Test Conditions	Min	Тур.	Max	Units
Supply Voltage	V _{DD}		3.5	12	16	V
Supply Current	I _{DD}		-	3	6	mA
Reverse Supply Current	I _{DDREV}	V _{DD} = -16V	-	-	10	uA
PWM Input Low Voltage	V _{IL}		-	-	0.8	V
PWM Input High Voltage	V _{IH}		2.1		5.5	V
PWM Input Frequency	F _{IN}	-2% <dcerr<2%< td=""><td>0.1</td><td>-</td><td>100</td><td>KHz</td></dcerr<2%<>	0.1	-	100	KHz
PWM internal pull-up resistor	R _{IN}		-	10	-	kΩ
Full Bridge On Resistance	R _{DSON}	TJ=25°C	-	3.0	-	Ω
Full Bridge On Resistance	Rdson	TJ=105°C	-	4.0	-	Ω
Output PWM frequency	Fout	10% <dc<sub>IN<100%</dc<sub>	-	22.5	-	KHz
Output Duty Cycle Range	DC _{OUT}	V _{MINSP} =0V	0	-	100	%
Output Duty Cycle Range	DC _{OUT}	Resistor R1 between MINSP to VREF, DC _{IN} <10%	10	-	100	%
Minimal Speed Setting Resistor	R _{MINSP}	DC _{IN} <10%,10% <dc<sub>OUT <100%,R_{REF}=68k</dc<sub>	40	-	100	ΚΩ
Output Duty Cycle Mismatch	DC _{ERR}	DC _{OUT} -DC _{IN} , V _{DD} =12V,T _A =25°C	-2	-	2	%
Freewheel Period	$T_{\rm FW}$		-	1	-	ms
Soft Start Initial Overdrive	KSOFT		-	30	-	%
Soft Start Rotation Detector	Esoft		-	4	-	edges
Soft Start Duration	T _{SOFT}		-	1.0	-	s
FG Output Saturation Voltage	VOL	B>B _{OP} ,I _{OUT} =5mA	-	0.2	0.5	V
FG Output Current Limit	I _{CL}	B>B _{OP}	-	25	-	mA
FG Output Leakage Current	I _{OFF}	V _{OUT} =16V,V _{DD} =12V, B <brp< td=""><td>-</td><td>0.1</td><td>10</td><td>uA</td></brp<>	-	0.1	10	uA
Minimum recommended magnetic field	$\mathbf{B}_{\mathrm{HALL}}$	$B_{OP}= B_{HALL} $ $B_{RP}=- B_{HALL} $	-	±15	±25	Gauss
Output Slope Duration	TSLOPE	Total Regulation Range	300	-	4000	us
Slope to Torque Ratio	S _{LRATIO}		-	12.5	-	%
Reference Output Voltage	V _{REF}		2.9	3.1	3.4	V
Reference Output Current Capability	I _{REF}		-	-	5	mA
Brown-Out Detector Threshold	V_{BOD}		2.8	3.1	3.4	V
Brown-Out Detector Reaction Time	T _{BOD}		-	8	-	ms
Locked Rotor Protection ON time	T _{ON}		-	1.0	-	s
Locked Rotor Protection OFF time	Toff		-	4.0	-	s

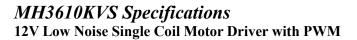

Typical Application Circuit (1) *PWM Cooling Fan (without minimal speed setting)*

(2) PWM Cooling Fan (with minimal speed setting)



(3) Temperature Controlled Cooling Fan

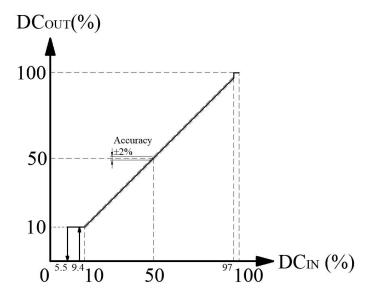
(4) 2-Speed Cooling Fan



Output Behavior versus Magnetic Pole

 $(Ta=25 \ C, V_{DD}=12V, unless otherwise specified)$

Parameter	Test Conditions	OUT1	OUT2	FG
South	B>BOP	Low	High	Low
North	B <brp< td=""><td>High</td><td>Low</td><td>High</td></brp<>	High	Low	High



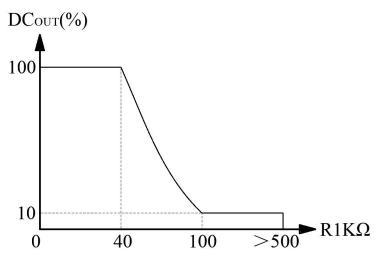
General Description (1) PWM Input

The PWM input allows very wide input frequency range (100Hz to 100kHz) while the output PWM frequency is kept constant above the audible frequency range. The input duty cycle controls the driving of the output duty cycle applied to the motor coil, thus the rotation speed is directly proportional to the input duty cycle with very high accuracy of $\pm/-2\%$ ensuring very good linearity.

The PWM input features a built-in pull-up resistor of 10kohms tied to the Reference Output Voltage (VREF). Since the interface providing the PWM signal is generally open-collector/drain type, an external resistor is not anymore required. In addition, it provides a fail/safe functionality as it will drive the motor at full speed in case of PWM signal wire-break.

(2) Soft Switching

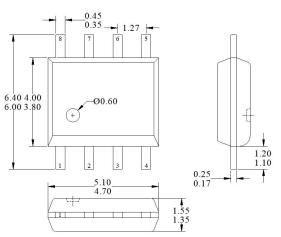
Soft Switching is performed using the output duty cycle rather than analogue voltage sweep, leading to much less power dissipation. The device automatically adjusts its slope duration targeting 12.5% from the torque period independently of the rotor magnet strength, producing an optimum balance between high efficiency and low noise performance. The possibility for very long slope duration guarantees extremely quiet operation even at very low rotation speed.


(3) Soft Start

The Intelligent Soft Start prevents very high peak current during start-up. An additional system guarantees proper motor start-up even with low PWM input duty cycle, ensuring enough initial torque to the motor is generated to enable rotation. When motor rotation is detected the output duty cycle is adjusted linearly to the input duty cycle.

(4) MINSP Controlled

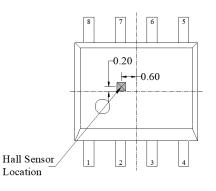
The Minimal Speed input allows setting of a minimum required rotation speed of the motor by using 2 inexpensive resistors. This is especially useful for applications where minimum cooling is a requirement to avoid system damage (example: computer CPU, VGA graphics, etc).

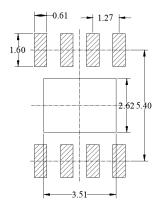


(5) FG Output

The tachometer open drain output (FG) feedback motor rotation speed to the system and is fully protected against short-circuit.

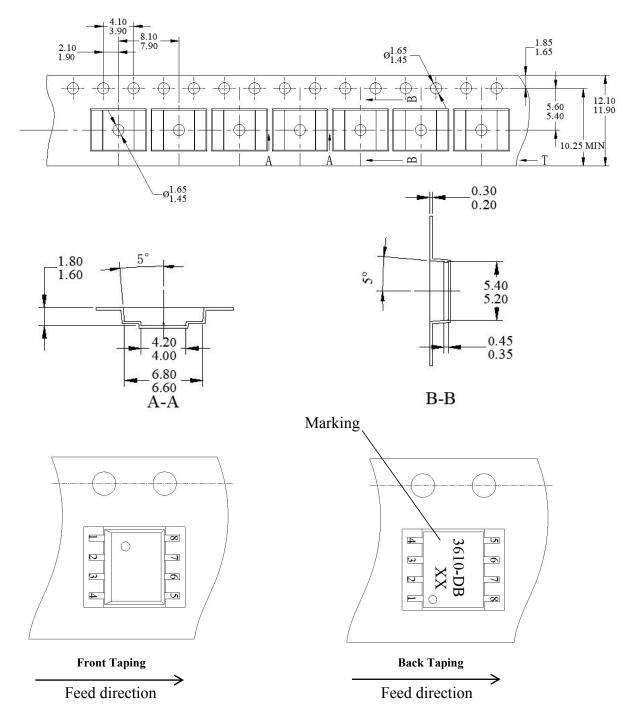
Sensor Location, Package Dimension and MarkingVS Package (SOP8-Straight Lead)Hall Plate Chip Location


(Top View)


NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. Marking:Bottom Side; Line1:3610; Line2: Date Code, Refer to DC table.
- 5. PINOUT:

Pin No.	Pin Name	Pin No.	Pin Name
1	PWM	5	OUT2
2	FG	6	GND
3	OUT1	7	MINSP
4	VDD	8	VREF



(For reference only) Land pattern

