

MH238 Hall-effect sensor is a temperature stable, stress-resistant, Low Tolerance of Sensitivity nano-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH238 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

The package type is in a Halogen Free version has been verified by third party Lab.

Features and Benefits

- CMOS Hall IC Technology
- Strong RF noise protection
- 1.65 to 5.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.65V, Nano power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp. range
- Ultra Low power consumption at 900nA (Avg)
- High ESD Protection, HBM >±8KV(min)
- RoHS compliant 2011/65/EU and Halogen Free.

Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter
- PDVD
- NB

063025 Page 1 of 5 Rev. 0.01

Ordering Information

Part No.	Temperature Suffix	Package Type
MH238EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH238ESO	E $(-40$ °C to $+85$ °C)	SO (SOT-23)
MH238ESM	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SM (DFN1.6*1.6-6L)

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended.

MH238, HBM >±8KV which is verified by third party lab.

063025 Page 2 of 5 Rev. 0.01

Absolute Maximum Ratings At(Ta=25°C)

Characteristics	Values	Unit
Supply voltage,(VDD)	6	V
Output Voltage,(Vout)	6	V
Reverse Voltage, (V_{DD}) (V_{OUT})	-0.3	V
Magnetic flux density	Unlimited	Gauss
Output current,(Iour)	10	mA
Operating temperature range, (<i>Ta</i>)	-40 to +85	°C
Storage temperature range, (<i>Ts</i>)	-65 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)	150	°C

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters: $Ta=25 \, \text{C}$, $V_{DD}=3.0 V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	1.65		5.5	V
Supply Current,(I_{DD})	Average		900		nA
Output Leakage Current,(Ioff)	Output off			0.1	uA
Output High Voltage,(V _{OH})	I _{OUT} =0.5mA(Source)	V _{DD} -0.2			V
Output Low Voltage, (V_{OL})	I _{OUT} =0.5mA(Sink)			0.2	V
Awake mode time,(<i>Taw</i>)	Operating		25	80	uS
Sleep mode time, (T_{SL})	Operating		35	80	mS
Sampling period			35		mS
Electro-Static Discharge	HBM	8			KV

Typical Application circuit

MH238EUA/SM Magnetic Specifications

DC Operating Parameters: $Ta=25 \, ^{\circ}C$, $V_{DD}=3.0 V$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating Point	Bops	S pole to branded side, B > BOP, Vout On	20		40	Gauss
	Bopn	N pole to branded side, B > BOP, Vout On	-40		-20	
Release Point	B _{RPS}	S pole to branded side, B < BRP, Vout Off	10		30	Gauss
	$\mathrm{B}_{\mathrm{RPN}}$	N pole to branded side, B < BRP, Vout Off	-30		-10	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		10		Gauss

MH238ESO Magnetic Specifications

DC Operating Parameters: $Ta=25 \, \text{C}$, $V_{DD}=3.0 V$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating Point	Bops	N pole to branded side, B > BOP, Vout On	20		40	Gauss
	Bopn	S pole to branded side, B > BOP, Vout On	-40		-20	Gauss
Release Point	B _{RPS}	N pole to branded side, B < BRP, Vout Off	10		30	Gauss
	B _{RPN}	S pole to branded side, B < BRP, Vout Off	-30		-10	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		10		Gauss

Sensor Location, package dimension and marking

UA Package (TO-92S)

Hall Chip location

NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 VDD Pin 2 GND Pin 3 Output

5. XXX; 1st X=Year; 2nd and 3rd XX=Week

Output Pin Assignment (Top view)

SO Package (SOT-23)

(Top View) 0.50 0.30 3 0.55 0.436 3.00 1.70 238XX 0.434 2 1.90-0.15 0.00 1.25 0.90

Hall Plate Chip Location

(For reference only)Land Pattern

NOTES:

- 1 PINOUT (See Top View at left :) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2 Controlling dimension: mm
- 3 Lead thickness after solder plating will be 0.254mm maximum
- 4 XX: Date Code, Refer to DC table

SM Package (Bottom View)

NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3.Lead thickness after solder plating will be 0.254mm maximum
- 4. PINOUT:

Pin No.	Pin Name	Function		
1	$V_{ m DD}$	Power Supply		
2	N.C	N.C		
3	V_{OUT}	Output		
4	N.C	N.C		
5	V_{SS}	Ground		
6	N.C	N.C		
7	N.C	N.C		

1. (For reference only) Land pattern

