

MH163 Hall-Effect sensor is a larger output load capacity and the most competitive latch Hall IC. This device also has wide operating voltage range and temperature range. The high sensitivity Hall-Effect for wide application scopes to common condition.

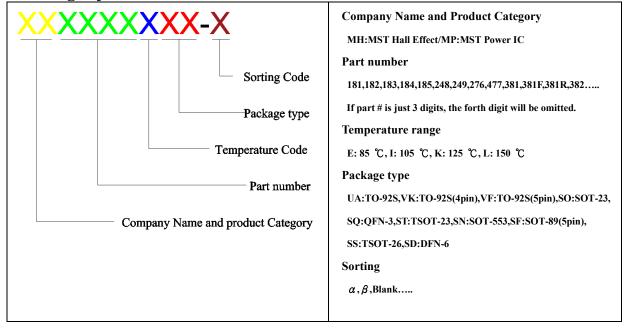
MH163 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output, Thermal shutdown protection and high ESD protection.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

MH163 is rated for operation between the ambient temperatures -40° C and 85° C for the E temperature range, and -40° C to 125° C for the K temperature range. Package SO is a SOT-23, a miniature low-profile surface-mount package.

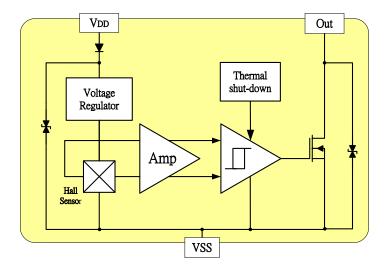
The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits


- Wide operating voltage range: 3.5V to 24V
- Maximum output sink current 100mA
- Open-Drain output.
- 100% tested at 125 °C for K.
- Custom temperature selection is available.
- V_{DD} reverse protection
- Good ESD Protection
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Fan motor application
- 3 phase BLDC motor application in "K" Spec
- Speed sensing
- Revolution counting


Ordering Information

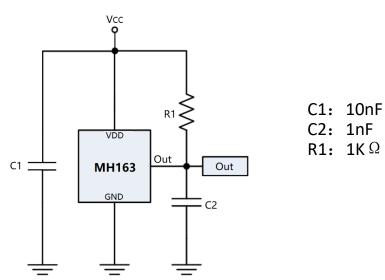
Part No.	Temperature Suffix	Package Type
MH163ESO	E (-40°C to +85°C)	SO (SOT-23)
MH163KSO	K (-40°C to +125°C)	SO (SOT-23)

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

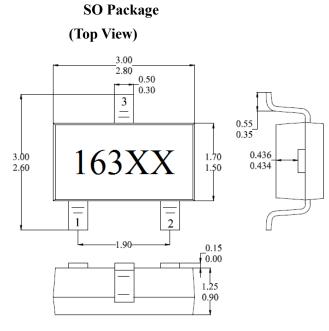
Absolute Maximum Ratings At (T_A=25°C)

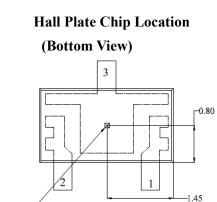
Characteristics	Values	Unit	
Supply Voltage, (VDD)	28	V	
Output Voltage, (Vout)	28	V	
Reverse Voltage, (VDD / Vout)	-28/-0.3	V	
Output current, (ISINK)		100	mA
O_{T} and T_{T}	"E" Class	$-40 \sim +85$	°C
Operating Temperature Range, (TA)	"K" Class	$-40 \sim +125$	°C
Storage temperature Range, (Ts)	$-65 \sim +150$	°C	
Maximum Junction Temp, (TJ)	150	°C	
	(θ_{JA}) SO	543	°C/W
Thermal Resistance	(θ_{JC}) SO	410	°C/W
Package Power Dissipation, (PD)		230	mW

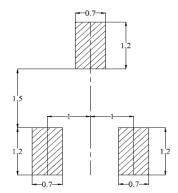

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters: $T_A = +25^{\circ}C, V_{DD} = 12V$


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.5		24.0	V
Supply Current,(<i>IDD</i>)	B <bop< td=""><td></td><td>3.5</td><td>8.0</td><td>mA</td></bop<>		3.5	8.0	mA
Output Saturation Voltage, (VDSON)	Iout=80mA,B>BOP			200.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="<math">12V</brp,>			10.0	uA
Output Rise Time, (<i>T</i> _{<i>R</i>})	RL=1K Ω , CL =20pF			0.5	uS
Output Fall Time, (TF)	RL=1KΩ; CL =20pF			0.5	uS
Thermal shut-down Temp		150			°C
Thermal shut-down Hysteresis			30		°C
Electro-Static Discharge	HBM	4			KV
Operate Point, (B _{OP})	SO	0		60	Gauss
Release Point, (B _{RP})	SO	-60		0	Gauss
Hysteresis, (B _{HYS})	B _{OP} - B _{RP}		60		Gauss


Typical Application circuit


Sensor Location, package dimension and marking MH163 Package

(For reference only)Land Pattern

Hall Sensor Location

NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- **3**. Lead thickness after solder plating will be 0.254mm maximum