

MH185 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH185 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and open drain output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

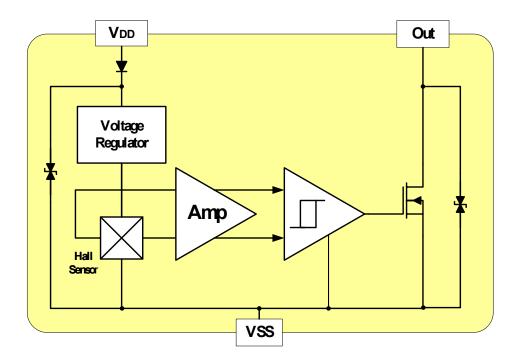
MH185 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The package style available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package.

Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69kHz
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- Reverse bias protection on power supply pin.
- RoHS compliant 2011/65/EU and Halogen Free

Applications


- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

MST
Magnesensor Technology
Ordering Informat

XXXXXXXXX-X	Company Name and Product Category MH:MST Hall Effect/MP:MST Power MOSFET		
Sorting Code Package type Temperature Code Part number Company Name and product Category	Part number 181,182,183,184,185,248,249,276,477,381,381F,381R,382 If part # is just 3 digits, the forth digit will be omitted. Temperature range E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C Package type UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23, SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin) Sorting α,β,Blank		

Part No.	Temperature Suffix	Package Type
MH185KSO	K (-40°C to + 125°C)	SO (SOT-23)

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

Characteristics		Values	Unit
Supply voltage, (VDD)		28	V
Output Voltage, (Vout)		28	V
Reverse Voltage, (VDD / Vout)		-0.3	V
Output current, (ISINK)		25	mA
Operating Temperature Range, (TA)	"E" Class	-40 ~ +85	°C
	"K" Class	-40 ~ +125	°C
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C
Maximum Junction Temp,(TJ)		150	°C
	(θJA) SO	543	°C/W
Thermal Resistance	(θ_{JC}) SO	410	°C/W
Package Power Dissipation, (P_D) SO		230	mW

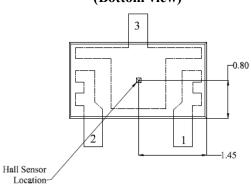

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A=+25^{\circ}C, V_{DD}=12V$

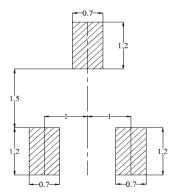
Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		26	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td>3.0</td><td>5.0</td><td>mA</td></bop<>		3.0	5.0	mA
Output Saturation Voltage, (Vsat)	B>BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA
Output Rise Time, (T_R)	RL=1.1KΩ, CL =20pF			0.45	uS
Output Fall Time, (TF)	RL=820Ω; CL=20pF			0.45	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, (BOP)	SO	5		60	GS
Release Point, (BRP)	SO	-60		-5	GS
Hysteresis,(BHYS)	Bop - Brp		60		GS


Typical application circuit



Sensor Location, Package Dimension and Marking

SO Package (Top View)


Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- **3**. Lead thickness after solder plating will be 0.254mm maximum

