

#### Ultra High Sensitivity Built-in Pull High Res Hall Effect Latch

MH193 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH193 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

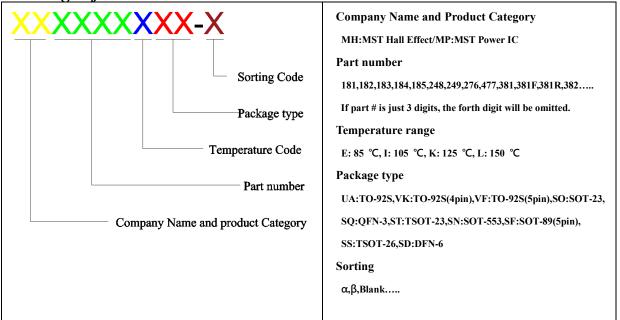
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH193 is rated for operation between the ambient temperatures −40°C and 85°C for the E temperature range, and −40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

# Features and Benefits

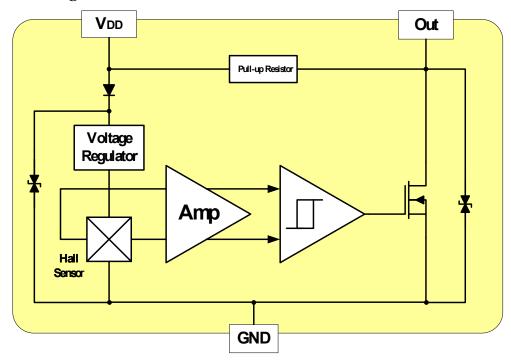
- DMOS Hall IC Technology
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69kHz
- Pull-up resistor output
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free


# Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability



#### Ultra High Sensitivity Built-in Pull High Res Hall Effect Latch


# **Ordering Information**



| Part No. | Temperature Suffix                                 | Package Type |
|----------|----------------------------------------------------|--------------|
| MH193KUA | K (-40°C to $+ 125$ °C)                            | UA (TO-92S)  |
| MH193KSO | K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$ | SO (SOT-23)  |
| MH193EUA | E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$  | UA (TO-92S)  |
| MH193ESO | E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$  | SO (SOT-23)  |

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

# Functional Diagram

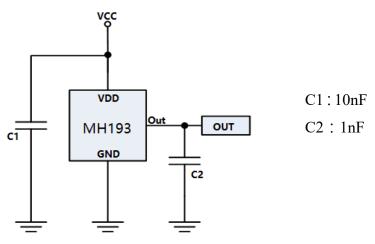




#### Ultra High Sensitivity Built-in Pull High Res Hall Effect Latch

Absolute Maximum Ratings At (Ta=25°C)

| Characteristics                            |               |           | Values           | Unit |  |
|--------------------------------------------|---------------|-----------|------------------|------|--|
| Supply voltage, (VDD)                      |               |           | 28               | V    |  |
| Output Voltage,(Vout)                      |               |           | 28               | V    |  |
| Reverse Voltage, (VDD / Vout)              |               |           | -0.3             | V    |  |
| Output current, (ISINK)                    |               |           | 25               | mA   |  |
| (Inerating Lemperature Range (IA)          |               | "E" Class | <b>-40</b> ∼ +85 | °C   |  |
|                                            |               | "K" Class | -40 ∼ +125       | °C   |  |
| Storage temperature range, ( <i>Ts</i> )   |               |           | -65 to +150      | °C   |  |
| Maximum Junction Temp,( <i>TJ</i> )        |               | 150       | °C               |      |  |
| Thermal Resistance                         | (θJA) UA / SO |           | 206 / 543        | °C/W |  |
|                                            | (θJC) UA / SO |           | 148 / 410        | °C/W |  |
| Package Power Dissipation, $(P_D)$ UA / SO |               | 606 / 230 | mW               |      |  |

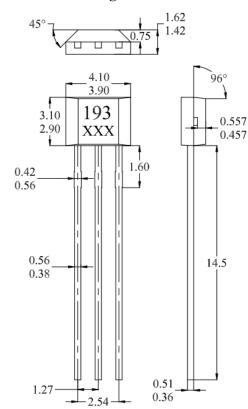

 $\textit{Note: Do not apply reverse voltage to $V_{DD}$ and $V_{OUT}$ Pin, It may be caused for Miss function or damaged device.}$ 

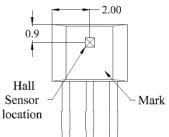
# **Electrical Specifications**

DC Operating Parameters :  $T_A=+25$ °C,  $V_{DD}=12V$ 

| Parameters                                   | <b>Test Conditions</b>                  | Min | Тур  | Max   | Units |
|----------------------------------------------|-----------------------------------------|-----|------|-------|-------|
| Supply Voltage, $(V_{DD})$                   | Operating                               | 2.5 |      | 26    | V     |
| Supply Current,(IDD)                         | B <b<sub>OP</b<sub>                     |     |      | 5.0   | mA    |
| Output Saturation Voltage, (Vsat)            | B>Bop                                   |     |      | 400.0 | mV    |
| Output Leakage Current, (Ioff)               | $I_{OFF}$ B< $B_{RP}$ , $V_{OUT} = 12V$ |     |      | 10.0  | uA    |
| Internal Oscillator Chopper Frequency,(fOSC) |                                         |     | 69   |       | kHz   |
| Output Rise Time, $(T_R)$                    | RL=1.1KΩ, CL =20pF                      |     | 0.04 | 0.45  | uS    |
| Output Fall Time, ( <i>T<sub>F</sub></i> )   | RL=820Ω; CL =20pF                       |     | 0.18 | 0.45  | uS    |
| Electro-Static Discharge                     | HMB                                     | 4   |      |       | KV    |
| Pull-up Resistor, (Ra)                       |                                         |     | 10   |       | ΚΩ    |
| Operate Point, (BOP)                         |                                         | 5   |      | 25    | GS    |
| Release Point, (BRP)                         |                                         | -25 |      | -5    | GS    |
| Hysteresis,(BHYS)                            |                                         |     | 30   |       | GS    |

# Typical application circuit

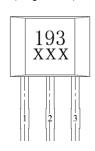



#### Ultra High Sensitivity Built-in Pull High Res Hall Effect Latch

# Sensor Location, Package Dimension and Marking

#### **UA Package**



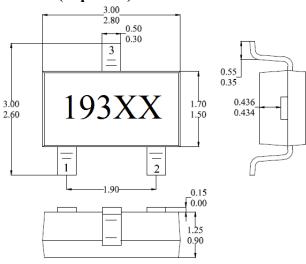



**Hall Chip location** 

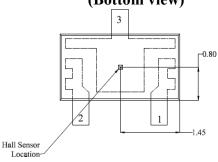
### **Output Pin Assignment**

#### (Top view)

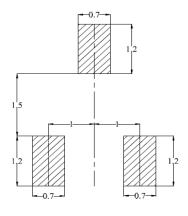



#### **NOTES:**

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:


Pin 1 VCC Pin 2 GND Pin 3 Output

5. XXX; 1<sup>st</sup> X=Year; 2<sup>nd</sup> and 3<sup>rd</sup> XX=Week


# SO Package (Top View)



# Hall Plate Chip Location (Bottom view)



### (For reference only)Land Pattern



#### **NOTES:**

- PINOUT (See Top View at left :)
   Pin 1 V<sub>DD</sub>; Pin 2 Output; Pin 3 GND.
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table