

MH248 (β) Specifications Micropower Hall Effect Switch

MH248EST- β Hall-effect sensor is a temperature stable, stress-resistant, micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH248EST-β includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

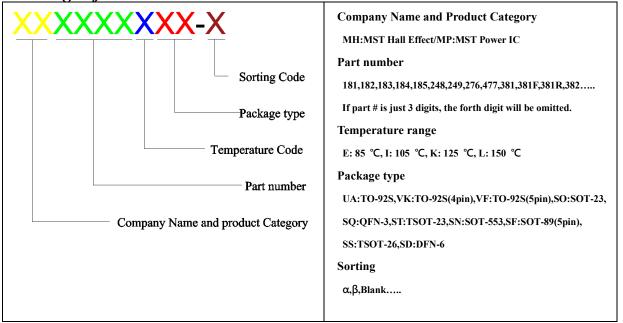
This device requires the presence of omni-polar magnetic fields for operation.

MH248EST- β is rated for operation between the ambient temperatures -40° C and $+85^{\circ}$ C for the E temperature range. The package Tsot-23 is an ST(0.7 mm nominal height) ,a miniature low-profile surface-mount package.

The package type is in a lead Halogen Free version was verified by third party Lab.

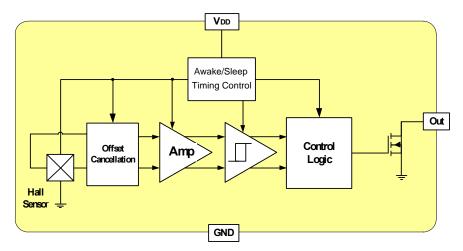
Features and Benefits

- CMOS Hall IC Technology
- Solid-State Reliability
- Micro power consumption for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 2.5 V and Max at 3.5V.
- High Sensitivity for direct reed switch replacement applications
- Multi Small Size option
- Custom sensitivity selection is available in optional package.
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications

MH248 (β) Specifications Micropower Hall Effect Switch


Ordering Information

Part No.	Temperature Suffix	Package Type
MH248EST-β	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	ST (TSOT-23)

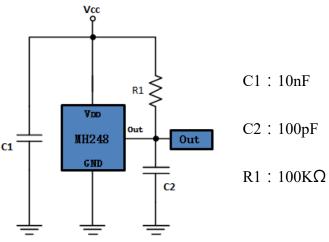
Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings At (Ta=25°C)

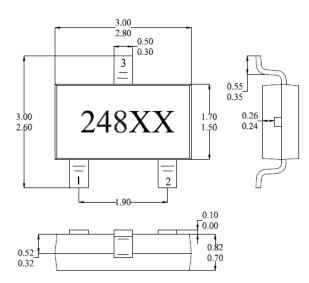
Characteristics		Values	Unit
Supply voltage, (V_{DD})		5	V
Output Voltage,(Vout)		5	V
Reverse voltage, (V_{DD}) (V_{O})	UT)	-0.3	V
Magnetic flux density		Unlimited	Gauss
Output current(I_{OUT})		10	mA
Operating temperature range, (<i>Ta</i>)		-40 to +85	°C
Storage temperature range, (Ts)		-55 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)		150	°C
Thermal Resistance	(θ_{JA}) ST	310	°C/W
	(θ_{JC}) ST	223	°C/W
Package Power Dissipation, (P_D) ST		400	mW


Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

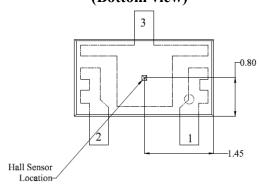
Electrical Specifications

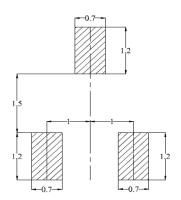
DC Operating Parameters TA=+25°C, VDD=3.0V

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		3.5	V
Supply Current,(IDD)	Awake State		2.5	4.0	mA
	Sleep State		8.0	12	μΑ
	Average		10	16	μΑ
Output Leakage	Output off			1	uA
Output Low Voltage,(Vsat)	IOUT=1mA			0.3	V
Awake mode time,(<i>Taw</i>)	Operating		70		uS
Sleep mode time,(TSL)	Operating		70		mS
Duty Cycle,(D,C)			0.1		%


Typical Application circuit

Sensor Location, Package Dimension and Marking MH248EST-β Package


ST Package (Top View)


NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

Hall Plate Chip Location (Bottom view)

(For reference only)Land Pattern

