

MH248 Hall-effect sensor is a temperature stable, stress-resistant, micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

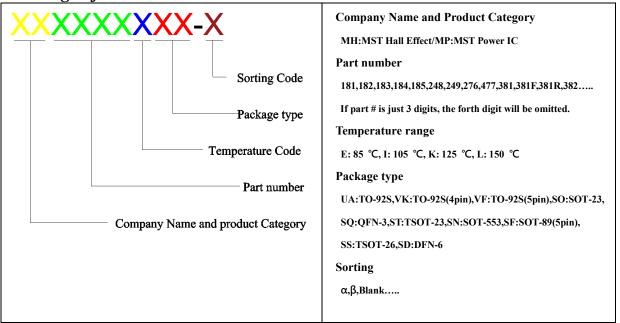
MH248 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

MH248 is rated for operation between the ambient temperatures –40°C and + 85°C for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SQ is an QFN2020-3(0.5 mm nominal height), Tsot-23 is an ST(0.7 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

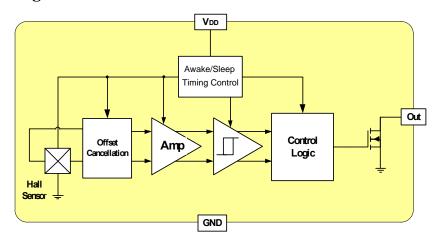
The package type is in a lead Halogen Free version was verified by third party Lab.

Features and Benefits


- CMOS Hall IC Technology
- Solid-State Reliability
- Micro power consumption for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.8 V and Max at 5.5V.
- High Sensitivity for direct reed switch replacement applications
- Multi Small Size option
- Custom sensitivity selection is available in optional package.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications


Ordering Information

Part No.	Temperature Suffix	Package Type
MH248EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)
MH248ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH248EST	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	ST (TSOT-23)
MH248ESQ	$E \left(-40^{\circ}C \text{ to} + 85^{\circ}C\right)$	SQ (QFN2020-3)

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

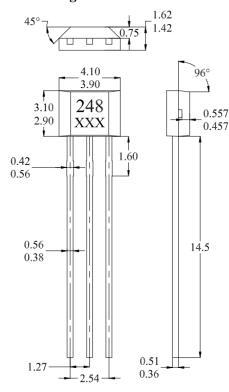
Absolute Maximum Ratings At (Ta=25°C)

Characteristics		Values	Unit
Supply voltage, (V_{DD})		6	V
Output Voltage, (V_{OUT})		6	V
Reverse voltage, (V_{DD}) (V_{OUT})		-0.3	V
Magnetic flux density		Unlimited	Gauss
Output current (<i>Iour</i>)		10	mA
Operating temperature range, (<i>Ta</i>)		-40 to +85	°C
Storage temperature range, (<i>Ts</i>)		-55 to +150	°C
Maximum Junction Temp, (Tj)		150	°C
Thermal Resistance	(θ_{JA}) UA / SO / ST / SQ	206 / 543 / 310 / 543	°C/W
	(θ_{JC}) UA / SO / ST /SQ	148 / 410 / 223 / 410	°C/W
Package Power Dissipation, (P _D) UA / SO / ST / SQ		606 / 230 / 400 / 230	mW

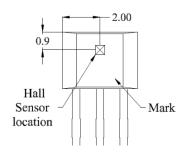
Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters $T_A = +25$ °C, $V_{DD} = 3.0V$


Parameter	rs	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)		Operating	1.8		5.5	V
Supply Current,(IDD)		Awake State		2.5	4.0	mA
		Sleep State		8.0	12	μΑ
		Average		10	16	μΑ
Output Leakage Current,(Ioff)		Output off			1	uA
Output Low Voltage,(Vsat)		I _{OUT} =1mA			0.3	V
Awake mode time,(<i>Taw</i>)		Operating		70		uS
Sleep mode time, (T_{SL})		Operating		70		mS
Duty Cycle,(D,C)				0.1		%
Operate Point,	$B_{OP}S$	S pole to branded side, B > BOP,	6		60	Gauss
	$B_{OP}N$	N pole to branded side, B > BOP,	-60		-6	
Release Point	$B_{RP}S$	S pole to branded side, B < BRP,	5		59	Gauss
	$B_{RP}N$	N pole to branded side, B < BRP,	-60		-5	
Hysteresis,(BHYS)		BOPx - BRPx		7		Gauss

Typical Application circuit

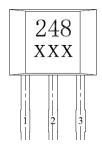


Sensor Location, Package Dimension and Marking

UA Package

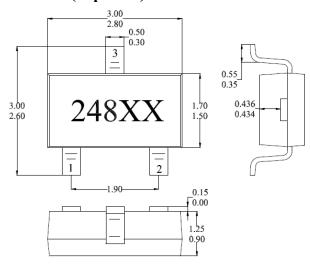
Hall Chip location

NOTES:

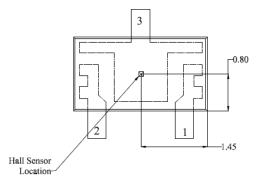

- 1. Controlling dimension: mm
- Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1 VCC
Pin 2 GND
Pin 3 Output

5. XXX; 1st X=Year; 2nd and 3rd XX=Week

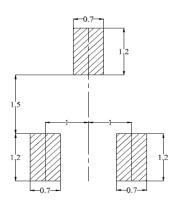

Output Pin Assignment

(Top view)

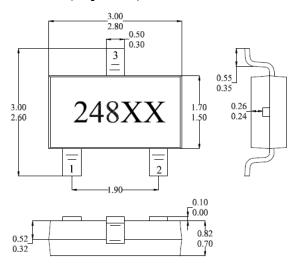

Package (SOT-23)

(Top View)

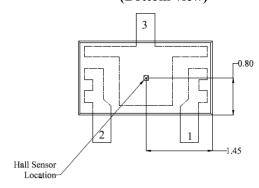
Hall Plate Chip Location

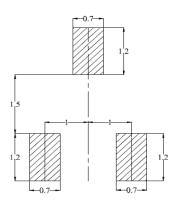

(Bottom view)

NOTES:

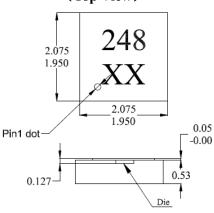

- 1. PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

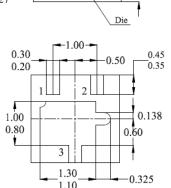
(For reference only)Land Pattern


Package (TSOT-23) (Top View)

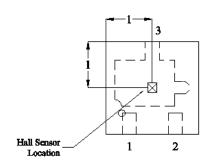

NOTES:

- PINOUT (See Top View at left :)
 Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum
- 4. XX: Date Code, Refer to DC table

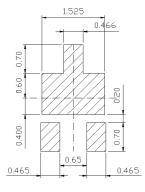

Hall Plate Chip Location (Bottom view)



(For reference only)Land Pattern


SQ Package (QFN2020-3) (Top View)

Bottom View


Hall Plate Chip Location (Top view)

(For reference only)Land Pattern

NOTES:

- 1. PINOUT (See Top View at left)
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm;
- 3. Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.
- 5. XX: Date Code, Refer to DC table

