

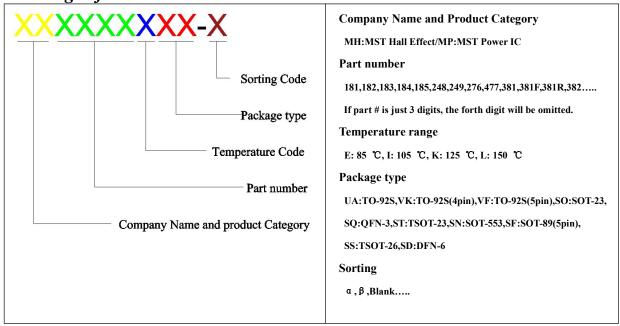
Ratio-metric unipolar linear hall sensor

MH4802 is a unipolar linear Hall-effect sensor, is composed of Hall sensor, linear amplifier and Totem-Pole output stage. It features low noise output, which makes it unnecessary to use external filtering. It also can provide increased temperature stability and accuracy. The linear Hall sensor has a wide operating temperature range of -40°C to +85°C, appropriate for commercial, consumer, and industrial environments.

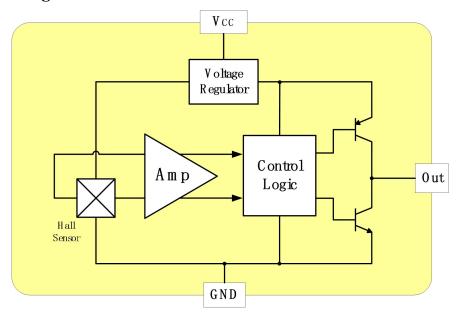
The high sensitivity of Hall-effect sensor accurately tracks extremely weak changes in magnetic flux density. The linear sourcing output voltage is set by the supply voltage and in proportion of vary of the magnetic flux density. Operating voltage range is 3.0 volts to 10.0 volts.

Features and Benefits

- Operating Voltage Range: 3.0V~10.0V
- Low-Noise Operation
- Linear output for circuit design flexibility
- Totem-Pole for a stable and accurate output
- Small package for SMD
- Cost competitive
- Robust ESD performance
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- Current sensing
- Motor control
- Position sensing
- Magnetic code reading
- Rotary encoder
- Ferrous metal detector
- Vibration sensing
- Liquid level sensing
- Weight sensing


Ratio-metric unipolar linear hall sensor

Ordering Information

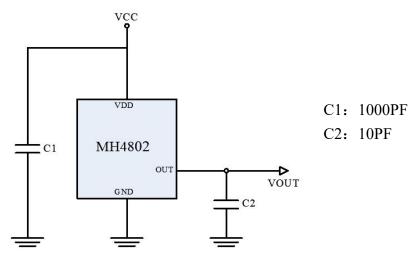
Part No.	Temperature Suffix	Package Type
MH4802ESO	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)
MH4802ESP	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SP (PSOT-23)

Functional Diagram

Ratio-metric unipolar linear hall sensor

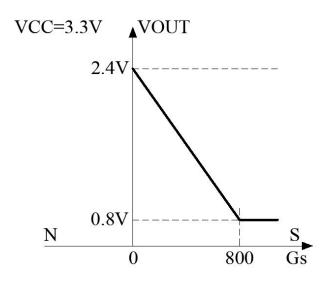
Absolute Maximum RatingsAt(Ta=25°C)

Characteristics		Values	Unit	
Supply Voltage,(VCC)		30	V	
Reverse Voltage, (VCC)		-0.3	V	
Magnetic Flux Density		Unlimited	Gauss	
Output Current , (IOUT)		2	mA	
Operating Temperature Range, (<i>Ta</i>) "E" version		-40 to +85	°C	
Storage temperature range, (<i>Ts</i>)		-65 to +165	°C	
Maximum Junction Temp,(<i>Tj</i>)		165	°C	
Thermal Resistance	(Өја	e) SO/SP	543/625	°C/W
	(θjc) SO/SP		48/116	°C/W
Package Power Dissipation, (PD)SO/SP		606/200	mW	


 $\textit{Note}: \textit{Do not apply reverse voltage to } V_{\text{CC}} \textit{and } V_{\text{OUT}} \textit{Pin, It may be caused for Missfunction or damaged device.}$

Electrical Specifications

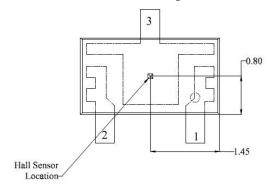
DC Operating Parameters: $T_A=+25$ °C, $V_{CC}=3.3V$


Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VCC)	Operating	3.0		10.0	V
Supply Current,(ICC)	B=0 Gauss			5	mA
Output Current ,(Io)				2	mA
Null Output Voltage, (V _{Null})	B=0 Gauss		2.4		V
Output Voltage Span, (Vos)		0.7		2.6	V
Linearity	% of Span		0.7		
Response Time			3		uS
Sensitivity		1.9		2.1	mV/G
Electro-Static Discharge	HBM	3			kV

Typical application circuit

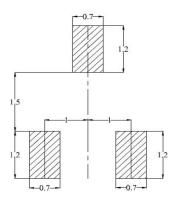
MH4802 Specifications Ratio-metric unipolar linear hall sensor

SO/SP Output Behavior versus Magnetic Polar



PS:The magnet is facing the marking side of the IC.

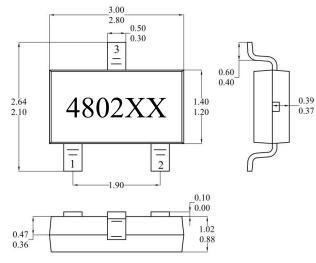
Sensor Location, package dimension and marking

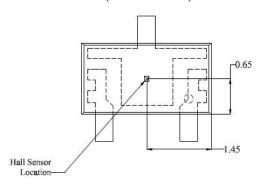

Hall Plate Chip Location

(For reference only)Land Pattern

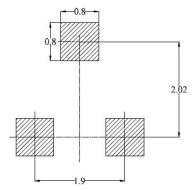
NOTES:

- 1 PINOUT (See Top View at left :) Pin 1 V_{DD}; Pin 2 Output; Pin 3 GND
- 2 Controlling dimension: mm
- 3 Lead thickness after solder plating will be 0.254mm maximum
- 4 XX: Date Code, Refer to DC table




Ratio-metric unipolar linear hall sensor

SP Package (PSOT-23)


(Top View)

Hall Plate Chip Location (Bottom view)

$(For\ reference\ only) Land\ Pattern$

NOTES:

- 1 PINOUT (See Top View at left :)
 - $Pin \ 1 \qquad V_{DD}$
 - Pin 2 Output
 - Pin 3 GND
- 2 Controlling dimension: mm
- 3 Lead thickness after solder plating will be 0.254mm maximum
- 4 XX: Date Code, Refer to DC table