

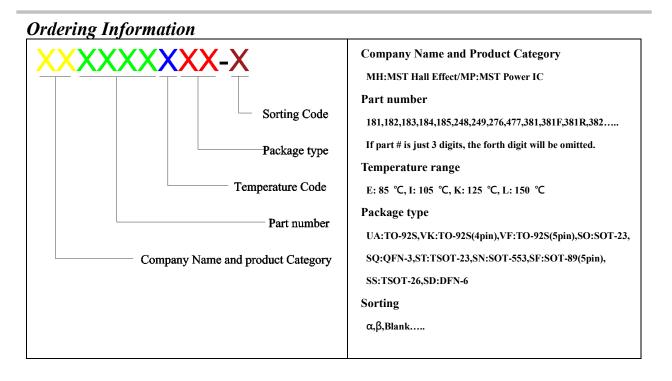
MH173 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH173 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

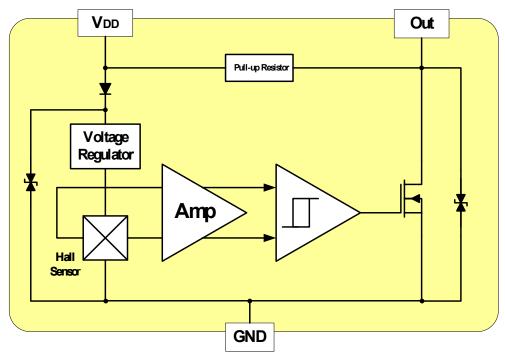
MH173 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The package style available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package.

Packages is Halogen Free standard and which have been verified by third party lab.


Features and Benefits

- DMOS Hall IC Technology
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69kHz
- Pull-up resistor output
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- Reverse bias protection on power supply pin.
- RoHS compliant 2011/65/EU and Halogen Free

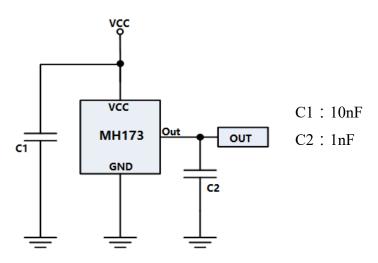
Applications


- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

Part No.	Temperature Suffix	Package Type	
MH173KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)	
MH173ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)	

Functional Diagram

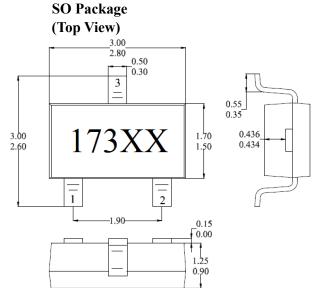
Absolute Maximum Ratings At (Ta=25 °C)

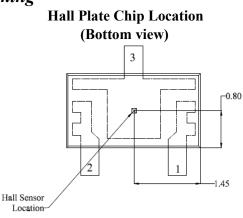

Characteristic	Values	Unit		
Supply voltage, (VDD)	28	V		
Output Voltage,(Vout)	28 V			
Reverse Voltage, (VDD / Vout)	-0.3	V		
Output current, (ISINK)	25	mA		
On anotin a Tama anotana Banaa (T	"E" Class	$-40 \sim +85$	°C	
Operating Temperature Range, (T	^{A)} "K" Class	$-40 \sim +125$	°C	
Storage temperature range, (<i>Ts</i>)	-65 to +150	°C		
Maximum Junction Temp,(<i>TJ</i>)	150	°C		
The survey of Descriptions of	(θJA) SO	543	°C/W	
Thermal Resistance	(θ_{JC}) SO	410	°C/W	
Package Power Dissipation, (P_D) SO		230	mW	

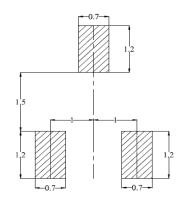
Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A = +25 ^{\circ}C$, $V_{DD} = 12V$								
Parameters	Test Conditions	Min	Тур	Max	Units			
Supply Voltage,(V _{DD})	Operating	2.5		26	V			
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td>3.0</td><td>5.0</td><td>mA</td></bop<>		3.0	5.0	mA			
Output Saturation Voltage, (Vsat)	B>BOP			400.0	mV			
Output Leakage Current, (Ioff)	IOFF B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA			
Output Rise Time, (<i>T</i> _R)	$R_L=1.1K\Omega$, $CL=20pF$			0.45	uS			
Output Fall Time, (<i>T_F</i>)	RL=820Ω; CL=20pF			0.45	uS			
Electro-Static Discharge	HBM	4			KV			
Operate Point, (BOP)	SO	5		60	GS			
Release Point, (BRP)	SO	-60		-5	GS			
Hysteresis,(BHYS)	BOP - BRP		60		GS			


Typical application circuit




MH173 Specifications High Sensitivity Built-in Pull High Res Hall Effect Latch

Sensor Location, Package Dimension and Marking

(For reference only)Land Pattern

NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum