

MH187 Hall-effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

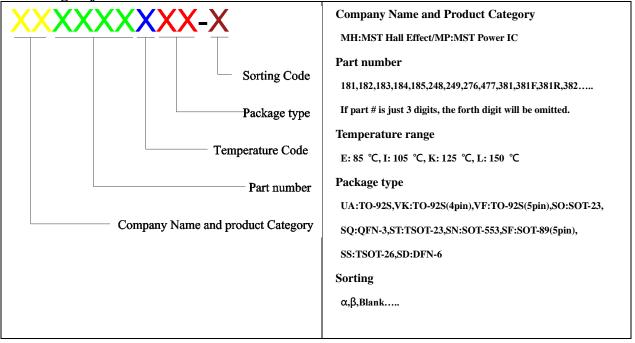
MH187 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, ESD circuit protection, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

MH187 is rated for operation between the ambient temperatures -40° C and 85° C for the E temperature range, and -40° C to 125° C for the K temperature range. The three package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SQ is an QFN2020-3(0.5 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

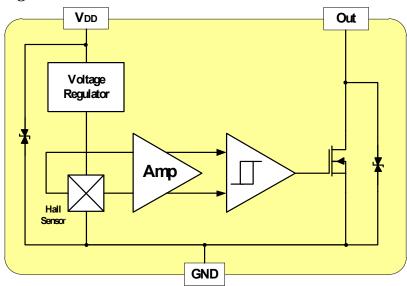
The UA package SO type and SQ type are Halogen Free package. All of them have been verified by third party Lab.

Features and Benefits


- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- Reliable and low shifting on high Temp condition
- Good ESD Protection
- 100% tested at 125 °C for K.
- 100% tested at 150 °C for L.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability


Ordering Information

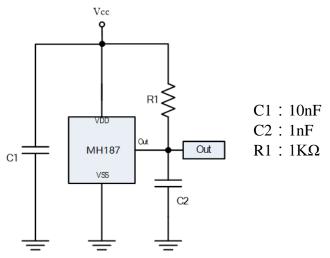
Part No.	Temperature Suffix	Package Type
MH187LUA	$L (-40^{\circ}C \text{ to} + 150^{\circ}C)$	UA (TO-92S)
MH187KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)
MH187KSO	K (-40°C to + 125°C)	SO (SOT-23)
MH187KSQ	K (-40°C to + 125°C)	SQ (QFN2020-3)
MH187EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)
MH187ESO	E (-40°C to $+ 85$ °C)	SO (SOT-23)
MH187ESQ	E (-40°C to + 85°C)	SQ (QFN2020-3)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

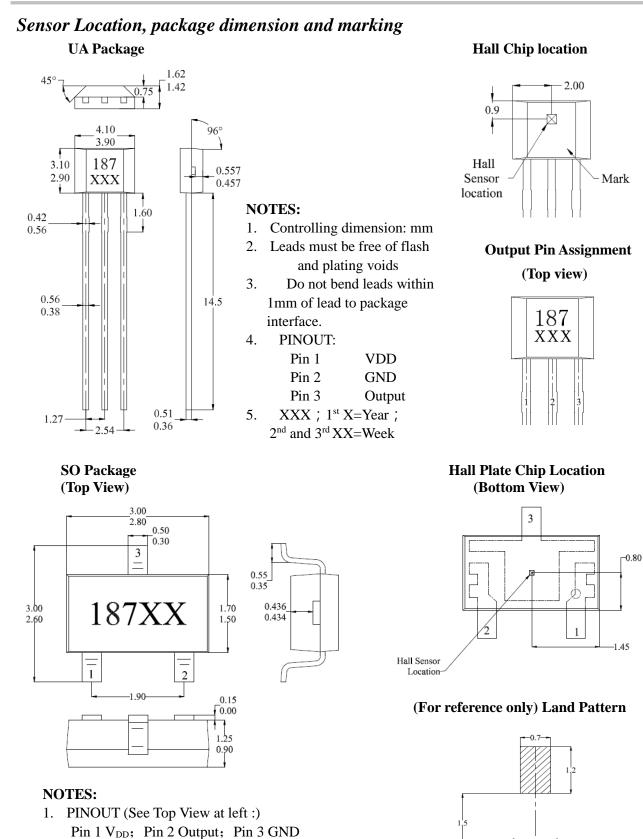
Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit	
Supply voltage, (V _{DD})			28	V	
Output Voltage,(Vout)			28	V	
Reverse voltage, (V_{DD}) (V_{OUT})			-0.3	V	
Output current, (<i>I</i> _{OUT})			50	mA	
		"E" version	-40 to +85	°C	
Operating Temperature Range, (Ta)		"K" version	-40 to +125	°C	
		"L" version	-40 to +150	°C	
Storage temperature range, (<i>Ts</i>)			-65 to +175	°C	
Maximum Junction Temp,(<i>Tj</i>)			175/150	°C	
Thermal Resistance	(<i>θја</i>) І	JA / SO / SQ	206 / 543 / 543	°C/W	
	(θjc) UA / SO / SQ		148 / 410 / 410	°C/W	
Package Power Dissipation, (P_D) UA / SO / SQ			728 / 230 / 230	mW	

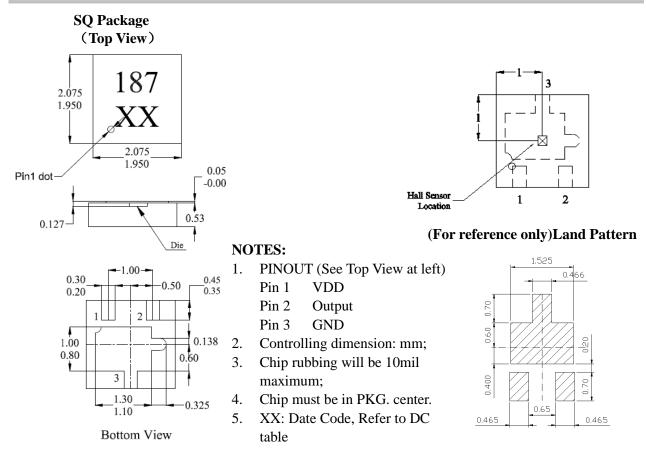

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications


DC Operating Parameters: $T_A = +25^{\circ}C, V_{DD} = 12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(V _{DD})	Operating	3.0		26.0	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	IOUT = 20 mA, B > BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="<math">12V</brp,>			15.0	uA
Output Rise Time, (<i>TR</i>)	RL= 1.1 K Ω , CL = 20 pF			0.45	uS
Output Fall Time, (TF)	RL=820Ω; CL =20pF			0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operate Point,(BOP)		15		60	Gauss
Release Point,(<i>BRP</i>)		-60		-15	Gauss
Hysteresis,(BHYS)			80		Gauss

Typical application circuit



3. Lead thickness after solder plating will be

0.254mm maximum4. XX: Date Code, Refer to DC table

2. Controlling dimension: mm

